Responder
Here are the simplified forms of the expressions:
1. \( x^{2}+7x+10 = (x+2)(x+5) \)
2. \( x^{2}+7x-10 \) has roots \( x = \frac{-7 \pm \sqrt{89}}{2} \)
3. \( x^{2}+5x+b \) (needs \( b \) for further simplification)
4. \( 3ab + 6b - 3a + 2b = 3ab + 8b - 3a \)
5. \( 2x + 4y - 2x + y = 5y \)
Solución
Let's analyze the expressions you've provided and simplify or solve them step by step.
1. **Expression 1:** \( x^{2}+7x+10 \)
2. **Expression 2:** \( x^{2}+7x-10 \)
3. **Expression 3:** \( x^{2}+5x+b \)
4. **Expression 4:** \( 3ab+6b-3a+2b \)
5. **Expression 5:** \( 2x+4y-2x+y \)
### Step 1: Simplifying Each Expression
**Expression 1:** \( x^{2}+7x+10 \)
This is a quadratic expression. We can factor it:
\[
x^{2}+7x+10 = (x+2)(x+5)
\]
**Expression 2:** \( x^{2}+7x-10 \)
This is also a quadratic expression. We can use the quadratic formula to find its roots:
\[
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\]
where \( a = 1, b = 7, c = -10 \).
Calculating the discriminant:
\[
b^2 - 4ac = 7^2 - 4 \cdot 1 \cdot (-10) = 49 + 40 = 89
\]
Now applying the quadratic formula:
\[
x = \frac{-7 \pm \sqrt{89}}{2}
\]
**Expression 3:** \( x^{2}+5x+b \)
This is another quadratic expression. We can express it in standard form, but we need the value of \( b \) to proceed further.
**Expression 4:** \( 3ab+6b-3a+2b \)
We can combine like terms:
\[
3ab + (6b + 2b) - 3a = 3ab + 8b - 3a
\]
**Expression 5:** \( 2x+4y-2x+y \)
We can simplify this by combining like terms:
\[
(2x - 2x) + (4y + y) = 0 + 5y = 5y
\]
### Summary of Results
1. **Expression 1:** \( (x+2)(x+5) \)
2. **Expression 2:** Roots are \( x = \frac{-7 \pm \sqrt{89}}{2} \)
3. **Expression 3:** Remains \( x^{2}+5x+b \) (needs \( b \) for further simplification)
4. **Expression 4:** \( 3ab + 8b - 3a \)
5. **Expression 5:** \( 5y \)
If you need further calculations or specific values for \( b \) or any other expression, please provide that information!
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución