Pregunta
upstudy study bank question image url

6. \( -x-2 y \geq 5 ;(-2,-3) \)

Ask by Schultz Garza. in the United States
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The point \((-2, -3)\) satisfies the inequality \( -x - 2y \geq 5 \).

Solución

To solve the inequality \( -x - 2y \geq 5 \) and check if the point \((-2, -3)\) satisfies it, we will follow these steps: 1. **Substitute the point into the inequality**: We will replace \(x\) and \(y\) with \(-2\) and \(-3\) respectively. 2. **Evaluate the inequality**: After substitution, we will check if the resulting expression holds true. Let's perform the substitution: \[ -x - 2y \geq 5 \] Substituting \(x = -2\) and \(y = -3\): \[ -(-2) - 2(-3) \geq 5 \] Now, let's simplify the left side: \[ 2 + 6 \geq 5 \] This simplifies to: \[ 8 \geq 5 \] Since \(8\) is indeed greater than \(5\), the inequality holds true. Thus, the point \((-2, -3)\) satisfies the inequality \( -x - 2y \geq 5 \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve the inequality \( -x - 2y \geq 5 \), let's first convert it into a more manageable form. Rearranging the terms gives us \( x + 2y \leq -5 \). Now, let's substitute the point \( (-2, -3) \) into the inequality: \(-(-2) - 2(-3) = 2 + 6 = 8\), which is not \( \geq 5 \). Thus, the point \( (-2, -3) \) does not satisfy the inequality. Now, if you were to graph the inequality, you'd shade the region that includes the line given by \( -x -2y = 5 \) in the opposite direction to where the point \( (-2,-3) \) sits. Remember, having clear boundaries makes understanding these concepts easier! If you're curious about graphing inequalities, a fantastic resource is online graphing tools like Desmos or GeoGebra. They let you visualize these inequalities and see how different points relate to the shaded area. You’ll have fun playing around with it, and maybe even discover new inequalities along the way!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad