Pregunta
upstudy study bank question image url

Solve using the addition principle. Don't forget to perform a check. \( x-\frac{3}{4}=\frac{5}{6} \)

Ask by Garrett Moran. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\( x = \frac{19}{12} \)

Solución

We are given the equation   x – (3/4) = 5/6. Step 1: Use the addition principle by adding 3/4 to both sides of the equation:   (x – 3/4) + 3/4 = 5/6 + 3/4. Step 2: Simplify both sides. On the left side, the –3/4 and +3/4 cancel:   x = 5/6 + 3/4. Step 3: To add the fractions on the right side, find a common denominator. The least common denominator (LCD) of 6 and 4 is 12:   5/6 = (5×2)/(6×2) = 10/12,   3/4 = (3×3)/(4×3) = 9/12. So, we have:   x = 10/12 + 9/12 = (10 + 9)/12 = 19/12. Step 4: Check the solution by substituting x = 19/12 back into the original equation:   x – 3/4 = 19/12 – 3/4. Convert 3/4 to a fraction with denominator 12:   3/4 = 9/12. Thus:   19/12 – 9/12 = 10/12 = 5/6. Since the left-hand side equals the right-hand side of the original equation, the solution is correct. Final Answer:   x = 19/12.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve the equation \( x - \frac{3}{4} = \frac{5}{6} \) using the addition principle, you need to isolate \( x \). Start by adding \(\frac{3}{4}\) to both sides of the equation: \[ x - \frac{3}{4} + \frac{3}{4} = \frac{5}{6} + \frac{3}{4} \] This simplifies to: \[ x = \frac{5}{6} + \frac{3}{4} \] To add \(\frac{5}{6}\) and \(\frac{3}{4}\), you need a common denominator. The least common multiple of 6 and 4 is 12, so convert each fraction: - \(\frac{5}{6} = \frac{10}{12}\) - \(\frac{3}{4} = \frac{9}{12}\) Now add them together: \[ x = \frac{10}{12} + \frac{9}{12} = \frac{19}{12} \] Thus, the solution is: \[ x = \frac{19}{12} \] Now, perform a check by substituting \( x \) back into the original equation: \[ \frac{19}{12} - \frac{3}{4} \] Convert \(\frac{3}{4}\) to have a denominator of 12: \[ \frac{3}{4} = \frac{9}{12} \] So, \[ \frac{19}{12} - \frac{9}{12} = \frac{10}{12} = \frac{5}{6} \] The left-hand side matches the right-hand side of the original equation, confirming that: \[ x = \frac{19}{12} \] is indeed the correct solution!

preguntas relacionadas

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Álgebra Mexico Feb 26, 2025
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad