Pregunta
upstudy study bank question image url

Perform the indicated operation. \[ \frac{2 x^{2}-6 x-8}{3 x^{2}+6 x-6} \div \frac{x^{2}-5 x+4}{x^{2}+4 x-5} \]

Ask by Edwards Gough. in the United States
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\[ \frac{2(x + 5)}{3((x + 1 - \sqrt{3})(x + 1 + \sqrt{3}))} \]

Solución

Factor the expression by following steps: - step0: Factor: \(3x^{2}+6x-6\) - step1: Factor the expression: \(3\left(x^{2}+2x-2\right)\) Factor the expression \( x^{2}+4 x-5 \). Factor the expression by following steps: - step0: Factor: \(x^{2}+4x-5\) - step1: Rewrite the expression: \(x^{2}+\left(5-1\right)x-5\) - step2: Calculate: \(x^{2}+5x-x-5\) - step3: Rewrite the expression: \(x\times x+x\times 5-x-5\) - step4: Factor the expression: \(x\left(x+5\right)-\left(x+5\right)\) - step5: Factor the expression: \(\left(x-1\right)\left(x+5\right)\) Factor the expression \( x^{2}-5 x+4 \). Factor the expression by following steps: - step0: Factor: \(x^{2}-5x+4\) - step1: Rewrite the expression: \(x^{2}+\left(-1-4\right)x+4\) - step2: Calculate: \(x^{2}-x-4x+4\) - step3: Rewrite the expression: \(x\times x-x-4x+4\) - step4: Factor the expression: \(x\left(x-1\right)-4\left(x-1\right)\) - step5: Factor the expression: \(\left(x-4\right)\left(x-1\right)\) Factor the expression \( 2 x^{2}-6 x-8 \). Factor the expression by following steps: - step0: Factor: \(2x^{2}-6x-8\) - step1: Rewrite the expression: \(2x^{2}-2\times 3x-2\times 4\) - step2: Factor the expression: \(2\left(x^{2}-3x-4\right)\) - step3: Factor the expression: \(2\left(x-4\right)\left(x+1\right)\) Let's start by factoring each expression in the given operation: 1. **Numerator of the first fraction**: \[ 2x^2 - 6x - 8 = 2(x - 4)(x + 1) \] 2. **Denominator of the first fraction**: \[ 3x^2 + 6x - 6 = 3(x^2 + 2x - 2) \] 3. **Numerator of the second fraction**: \[ x^2 - 5x + 4 = (x - 4)(x - 1) \] 4. **Denominator of the second fraction**: \[ x^2 + 4x - 5 = (x - 1)(x + 5) \] Now, we can rewrite the original expression using these factored forms: \[ \frac{2(x - 4)(x + 1)}{3(x^2 + 2x - 2)} \div \frac{(x - 4)(x - 1)}{(x - 1)(x + 5)} \] To perform the division, we multiply by the reciprocal of the second fraction: \[ \frac{2(x - 4)(x + 1)}{3(x^2 + 2x - 2)} \times \frac{(x - 1)(x + 5)}{(x - 4)(x - 1)} \] Now, we can simplify the expression: - The \((x - 4)\) terms cancel out. - The \((x - 1)\) terms also cancel out. This leaves us with: \[ \frac{2(x + 1)(x + 5)}{3(x^2 + 2x - 2)} \] Next, we need to simplify the denominator \(3(x^2 + 2x - 2)\). Let's factor \(x^2 + 2x - 2\): \[ x^2 + 2x - 2 = (x + 1)^2 - 3 = (x + 1 - \sqrt{3})(x + 1 + \sqrt{3}) \] Thus, the expression becomes: \[ \frac{2(x + 1)(x + 5)}{3((x + 1 - \sqrt{3})(x + 1 + \sqrt{3}))} \] Now, we can simplify further if needed, but this is the final simplified form of the expression: \[ \frac{2(x + 5)}{3((x + 1 - \sqrt{3})(x + 1 + \sqrt{3}))} \] This is the result of the operation.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To perform the operation \[ \frac{2 x^{2}-6 x-8}{3 x^{2}+6 x-6} \div \frac{x^{2}-5 x+4}{x^{2}+4 x-5}, \] we start by rewriting the division as multiplication by the reciprocal: \[ \frac{2 x^{2}-6 x-8}{3 x^{2}+6 x-6} \cdot \frac{x^{2}+4 x-5}{x^{2}-5 x+4}. \] Next, we will factor each polynomial where possible. 1. **Factoring the Numerator and Denominator of the First Fraction:** - The numerator \(2x^2 - 6x - 8\) factors as follows: \[ 2x^2 - 6x - 8 = 2(x^2 - 3x - 4) = 2(x - 4)(x + 1). \] - The denominator \(3x^2 + 6x - 6\) can be factored by pulling out a common factor: \[ 3(x^2 + 2x - 2). \] The quadratic \(x^2 + 2x - 2\) does not factor nicely, so we will leave it in this form for now. 2. **Factoring the Second Fraction:** - The numerator \(x^2 + 4x - 5\) factors as: \[ (x + 5)(x - 1). \] - The denominator \(x^2 - 5x + 4\) factors as: \[ (x - 4)(x - 1). \] Putting it all together, we have: \[ \frac{2(x - 4)(x + 1)}{3(x^2 + 2x - 2)} \cdot \frac{(x + 5)(x - 1)}{(x - 4)(x - 1)}. \] 3. **Cancelling Common Factors:** The \( (x-4) \) factors in the numerator and denominator can be cancelled as well as the \( (x - 1) \) factors: \[ = \frac{2(x + 1)(x + 5)}{3(x^2 + 2x - 2)}. \] Now our expression becomes: \[ \frac{2(x + 1)(x + 5)}{3(x^2 + 2x - 2)}. \] 4. **Final Result:** As long as \(x \neq 4\) and \(x \neq 1\) (to avoid division by zero in the original expression), the final result is: \[ \frac{2(x + 1)(x + 5)}{3(x^2 + 2x - 2)}. \] Therefore, \[ \frac{2(x + 1)(x + 5)}{3(x^2 + 2x - 2)} \quad \text{(for } x \neq 4, 1\text{)}. \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad