Perform the indicated operation. \[ \frac{2 x^{2}-6 x-8}{3 x^{2}+6 x-6} \div \frac{x^{2}-5 x+4}{x^{2}+4 x-5} \]
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Extra Insights
To perform the operation \[ \frac{2 x^{2}-6 x-8}{3 x^{2}+6 x-6} \div \frac{x^{2}-5 x+4}{x^{2}+4 x-5}, \] we start by rewriting the division as multiplication by the reciprocal: \[ \frac{2 x^{2}-6 x-8}{3 x^{2}+6 x-6} \cdot \frac{x^{2}+4 x-5}{x^{2}-5 x+4}. \] Next, we will factor each polynomial where possible. 1. **Factoring the Numerator and Denominator of the First Fraction:** - The numerator \(2x^2 - 6x - 8\) factors as follows: \[ 2x^2 - 6x - 8 = 2(x^2 - 3x - 4) = 2(x - 4)(x + 1). \] - The denominator \(3x^2 + 6x - 6\) can be factored by pulling out a common factor: \[ 3(x^2 + 2x - 2). \] The quadratic \(x^2 + 2x - 2\) does not factor nicely, so we will leave it in this form for now. 2. **Factoring the Second Fraction:** - The numerator \(x^2 + 4x - 5\) factors as: \[ (x + 5)(x - 1). \] - The denominator \(x^2 - 5x + 4\) factors as: \[ (x - 4)(x - 1). \] Putting it all together, we have: \[ \frac{2(x - 4)(x + 1)}{3(x^2 + 2x - 2)} \cdot \frac{(x + 5)(x - 1)}{(x - 4)(x - 1)}. \] 3. **Cancelling Common Factors:** The \( (x-4) \) factors in the numerator and denominator can be cancelled as well as the \( (x - 1) \) factors: \[ = \frac{2(x + 1)(x + 5)}{3(x^2 + 2x - 2)}. \] Now our expression becomes: \[ \frac{2(x + 1)(x + 5)}{3(x^2 + 2x - 2)}. \] 4. **Final Result:** As long as \(x \neq 4\) and \(x \neq 1\) (to avoid division by zero in the original expression), the final result is: \[ \frac{2(x + 1)(x + 5)}{3(x^2 + 2x - 2)}. \] Therefore, \[ \frac{2(x + 1)(x + 5)}{3(x^2 + 2x - 2)} \quad \text{(for } x \neq 4, 1\text{)}. \]
