Pregunta
upstudy study bank question image url

Finding the rate or time in a word problem on continuous exponential... The mass of a radioactive substance follows a continuous exponential decay model, with a decay rate parameter of \( 7.2 \% \) per day. Find the half-life of this substance (that is, the time it takes for one-half the original amount in a given sample of this substance to decay). Note: This is a continuous exponential decay model. Do not round any intermediate computations, and round your answer to the nearest hundredth. days

Ask by Bernard Li. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The half-life of the substance is approximately 9.63 days.

Solución

In a continuous exponential decay model, the mass as a function of time is given by   m(t) = m₀ · e^(–kt), where m₀ is the initial mass and k is the decay rate. The half-life, t₁/₂, is the time it takes for the mass to become half of m₀, so we have   m₀/2 = m₀ · e^(–k · t₁/₂). Dividing both sides by m₀:   1/2 = e^(–k · t₁/₂). Taking the natural logarithm of both sides:   ln(1/2) = –k · t₁/₂. Recall that ln(1/2) = –ln2, so:   –ln2 = –k · t₁/₂  ⟹  t₁/₂ = ln2 / k. Plug in k = 0.072 (since 7.2% per day = 0.072 per day):   t₁/₂ = ln2 / 0.072. Now, compute t₁/₂:   ln2 ≈ 0.6931471805599453,   t₁/₂ ≈ 0.6931471805599453 / 0.072 ≈ 9.626 (days). Rounded to the nearest hundredth:   t₁/₂ ≈ 9.63 days. Thus, the half-life of the substance is approximately 9.63 days.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the half-life of a radioactive substance with a continuous exponential decay, you can use the formula for half-life \( t_{1/2} = \frac{\ln(2)}{k} \), where \( k \) is the decay constant expressed as a decimal. In this case, your decay rate \( k = 0.072 \). Plugging in the values, you get \( t_{1/2} = \frac{\ln(2)}{0.072} \approx 9.66 \) days when you round to the nearest hundredth. It's important to remember that when dealing with exponential decay, the best practice is to take care with the conversion from percentages to decimals and ensure that you understand the difference between discrete and continuous models. Mistakes often arise from incorrect rate conversions or using the wrong formula for the context, so double-checking your calculations is key!

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad