Responder
Here are the derivatives using the Quotient Rule:
7. \( f'(x) = \frac{1 - x^2}{(x^2 + 1)^2} \)
8. \( g'(t) = \frac{6t^2 + 30t + 2}{(2t + 5)^2} \)
9. \( h'(x) = \frac{1 - 3x^2}{2\sqrt{x} \cdot (x^2 + 1)^2} \)
10. \( f'(x) = \frac{x(3\sqrt{x} + 2)}{(2\sqrt{x} + 1)^2} \)
11. \( g'(x) = \frac{x \cos x - 2 \sin x}{x^3} \)
12. \( f'(t) = \frac{-(t \sin t + 3 \cos t)}{t^4} \)
Any equivalent algebraic form is correct.
Solución
We are given functions written as quotients. Recall that the Quotient Rule states that if
F(x) = U(x)/V(x),
then
F ′(x) = [V(x)·U ′(x) − U(x)·V ′(x)]⁄[V(x)]².
Below are the step‐by‐step calculations for Exercises 7–12.
─────────────────────────────
1. Exercise 7:
f(x) = x⁄(x² + 1)
Here, U(x) = x with U ′(x) = 1, and V(x) = x² + 1 with V ′(x) = 2x.
Applying the Quotient Rule:
f ′(x) = [(x² + 1)(1) − x(2x)]⁄(x² + 1)²
= [x² + 1 − 2x²]⁄(x² + 1)²
= (1 − x²)⁄(x² + 1)²
─────────────────────────────
2. Exercise 8:
g(t) = (3t² − 1)⁄(2t + 5)
Here, U(t) = 3t² − 1 with U ′(t) = 6t, and V(t) = 2t + 5 with V ′(t) = 2.
Then,
g ′(t) = [(2t + 5)(6t) − (3t² − 1)(2)]⁄(2t + 5)²
= [12t² + 30t − 6t² + 2]⁄(2t + 5)²
= (6t² + 30t + 2)⁄(2t + 5)²
─────────────────────────────
3. Exercise 9:
h(x) = √x⁄(x² + 1) (write √x as x^(1/2))
Let U(x) = x^(1/2) so that U ′(x) = (1)/(2x^(1/2)) and V(x) = x² + 1 so that V ′(x) = 2x.
Thus,
h ′(x) = [(x² + 1)·(1/(2√x)) − √x·(2x)]⁄(x² + 1)²
Now, simplify the numerator:
= [ (x² + 1)/(2√x) − 2x√x ]⁄(x² + 1)²
Recognize that 2x√x = 2x^(3/2). To combine terms, find a common denominator (2√x):
= [ (x² + 1 − 4x²)/(2√x) ]⁄(x² + 1)²
= (1 − 3x²)⁄[2√x·(x² + 1)²]
─────────────────────────────
4. Exercise 10:
f(x) = x²⁄(2√x + 1) (write √x as x^(1/2))
Let U(x) = x² so that U ′(x) = 2x, and let V(x) = 2x^(1/2) + 1.
Differentiate V(x): since the derivative of 2x^(1/2) is 2·(1/2)x^(–1/2) = x^(–1/2), we have V ′(x) = 1/√x.
Now apply the Quotient Rule:
f ′(x) = [(2√x + 1)(2x) − x²·(1/√x)]⁄(2√x + 1)²
Simplify the numerator:
(2√x + 1)(2x) = 4x√x + 2x and x²·(1/√x) = x^(3/2)
Thus,
Numerator = 4x^(3/2) + 2x − x^(3/2) = 3x^(3/2) + 2x
We can factor an x:
= x(3√x + 2)
So,
f ′(x) = [x(3√x + 2)]⁄(2√x + 1)²
─────────────────────────────
5. Exercise 11:
g(x) = sin x⁄x²
Let U(x) = sin x so that U ′(x) = cos x, and V(x) = x² so that V ′(x) = 2x.
Then,
g ′(x) = [x²·cos x − sin x·(2x)]⁄(x²)²
= [x² cos x − 2x sin x]⁄x⁴
Factor an x from the numerator:
= x(x cos x − 2 sin x)⁄x⁴ = (x cos x − 2 sin x)⁄x³
─────────────────────────────
6. Exercise 12:
f(t) = cos t⁄t³
Here, U(t) = cos t with U ′(t) = −sin t, and V(t) = t³ with V ′(t) = 3t².
Using the Quotient Rule:
f ′(t) = [t³·(−sin t) − cos t·(3t²)]⁄(t³)²
= [−t³ sin t − 3t² cos t]⁄t⁶
Factor t² from the numerator:
= −t² (t sin t + 3 cos t)⁄t⁶ = −(t sin t + 3 cos t)⁄t⁴
─────────────────────────────
Final Answers:
7. f ′(x) = (1 − x²)⁄(x² + 1)²
8. g ′(t) = (6t² + 30t + 2)⁄(2t + 5)²
9. h ′(x) = (1 − 3x²)⁄[2√x · (x² + 1)²]
10. f ′(x) = [x(3√x + 2)]⁄(2√x + 1)²
11. g ′(x) = (x cos x − 2 sin x)⁄x³
12. f ′(t) = −(t sin t + 3 cos t)⁄t⁴
Any answer that is algebraically equivalent to these is correct.
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución