Pregunta
upstudy study bank question image url

Using the Quotient Rule In Exercises 7-12, use the Quotient Rule to find the derivative of the function. \( \begin{array}{ll}\text { 7. } f(x)=\frac{x}{x^{2}+1} & \text { 8. } g(t)=\frac{3 t^{2}-1}{2 t+5} \\ \text { 9. } h(x)=\frac{\sqrt{x}}{x^{2}+1} & \text { 10. } f(x)=\frac{x^{2}}{2 \sqrt{x}+1} \\ \text { 11. } g(x)=\frac{\sin x}{x^{2}} & \text { 12. } f(t)=\frac{\cos t}{t^{3}}\end{array} \)

Ask by Mejia Knight. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Here are the derivatives using the Quotient Rule: 7. \( f'(x) = \frac{1 - x^2}{(x^2 + 1)^2} \) 8. \( g'(t) = \frac{6t^2 + 30t + 2}{(2t + 5)^2} \) 9. \( h'(x) = \frac{1 - 3x^2}{2\sqrt{x} \cdot (x^2 + 1)^2} \) 10. \( f'(x) = \frac{x(3\sqrt{x} + 2)}{(2\sqrt{x} + 1)^2} \) 11. \( g'(x) = \frac{x \cos x - 2 \sin x}{x^3} \) 12. \( f'(t) = \frac{-(t \sin t + 3 \cos t)}{t^4} \) Any equivalent algebraic form is correct.

Solución

We are given functions written as quotients. Recall that the Quotient Rule states that if   F(x) = U(x)/V(x), then   F ′(x) = [V(x)·U ′(x) − U(x)·V ′(x)]⁄[V(x)]². Below are the step‐by‐step calculations for Exercises 7–12. ───────────────────────────── 1. Exercise 7:   f(x) = x⁄(x² + 1) Here, U(x) = x with U ′(x) = 1, and V(x) = x² + 1 with V ′(x) = 2x. Applying the Quotient Rule:   f ′(x) = [(x² + 1)(1) − x(2x)]⁄(x² + 1)²        = [x² + 1 − 2x²]⁄(x² + 1)²        = (1 − x²)⁄(x² + 1)² ───────────────────────────── 2. Exercise 8:   g(t) = (3t² − 1)⁄(2t + 5) Here, U(t) = 3t² − 1 with U ′(t) = 6t, and V(t) = 2t + 5 with V ′(t) = 2. Then,   g ′(t) = [(2t + 5)(6t) − (3t² − 1)(2)]⁄(2t + 5)²        = [12t² + 30t − 6t² + 2]⁄(2t + 5)²        = (6t² + 30t + 2)⁄(2t + 5)² ───────────────────────────── 3. Exercise 9:   h(x) = √x⁄(x² + 1)     (write √x as x^(1/2)) Let U(x) = x^(1/2) so that U ′(x) = (1)/(2x^(1/2)) and V(x) = x² + 1 so that V ′(x) = 2x. Thus,   h ′(x) = [(x² + 1)·(1/(2√x)) − √x·(2x)]⁄(x² + 1)² Now, simplify the numerator:   = [ (x² + 1)/(2√x) − 2x√x ]⁄(x² + 1)² Recognize that 2x√x = 2x^(3/2). To combine terms, find a common denominator (2√x):   = [ (x² + 1 − 4x²)/(2√x) ]⁄(x² + 1)²   = (1 − 3x²)⁄[2√x·(x² + 1)²] ───────────────────────────── 4. Exercise 10:   f(x) = x²⁄(2√x + 1)     (write √x as x^(1/2)) Let U(x) = x² so that U ′(x) = 2x, and let V(x) = 2x^(1/2) + 1. Differentiate V(x): since the derivative of 2x^(1/2) is 2·(1/2)x^(–1/2) = x^(–1/2), we have V ′(x) = 1/√x. Now apply the Quotient Rule:   f ′(x) = [(2√x + 1)(2x) − x²·(1/√x)]⁄(2√x + 1)² Simplify the numerator:   (2√x + 1)(2x) = 4x√x + 2x  and  x²·(1/√x) = x^(3/2) Thus,   Numerator = 4x^(3/2) + 2x − x^(3/2) = 3x^(3/2) + 2x We can factor an x:   = x(3√x + 2) So,   f ′(x) = [x(3√x + 2)]⁄(2√x + 1)² ───────────────────────────── 5. Exercise 11:   g(x) = sin x⁄x² Let U(x) = sin x so that U ′(x) = cos x, and V(x) = x² so that V ′(x) = 2x. Then,   g ′(x) = [x²·cos x − sin x·(2x)]⁄(x²)²        = [x² cos x − 2x sin x]⁄x⁴ Factor an x from the numerator:   = x(x cos x − 2 sin x)⁄x⁴ = (x cos x − 2 sin x)⁄x³ ───────────────────────────── 6. Exercise 12:   f(t) = cos t⁄t³ Here, U(t) = cos t with U ′(t) = −sin t, and V(t) = t³ with V ′(t) = 3t². Using the Quotient Rule:   f ′(t) = [t³·(−sin t) − cos t·(3t²)]⁄(t³)²        = [−t³ sin t − 3t² cos t]⁄t⁶ Factor t² from the numerator:   = −t² (t sin t + 3 cos t)⁄t⁶ = −(t sin t + 3 cos t)⁄t⁴ ───────────────────────────── Final Answers: 7. f ′(x) = (1 − x²)⁄(x² + 1)² 8. g ′(t) = (6t² + 30t + 2)⁄(2t + 5)² 9. h ′(x) = (1 − 3x²)⁄[2√x · (x² + 1)²] 10. f ′(x) = [x(3√x + 2)]⁄(2√x + 1)² 11. g ′(x) = (x cos x − 2 sin x)⁄x³ 12. f ′(t) = −(t sin t + 3 cos t)⁄t⁴ Any answer that is algebraically equivalent to these is correct.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the derivative of \( f(x) = \frac{x}{x^2 + 1} \) using the Quotient Rule, we first identify the numerator and the denominator: \( u = x \) and \( v = x^2 + 1 \). The Quotient Rule states that \( f'(x) = \frac{u'v - uv'}{v^2} \). Here, \( u' = 1 \) and \( v' = 2x \). Plugging in these values gives: \[ f'(x) = \frac{(1)(x^2 + 1) - (x)(2x)}{(x^2 + 1)^2} = \frac{x^2 + 1 - 2x^2}{(x^2 + 1)^2} = \frac{1 - x^2}{(x^2 + 1)^2}. \] Now, for \( g(t) = \frac{3t^2 - 1}{2t + 5} \), we again apply the Quotient Rule where \( u = 3t^2 - 1 \) and \( v = 2t + 5 \). We find \( u' = 6t \) and \( v' = 2 \). Therefore: \[ g'(t) = \frac{(6t)(2t + 5) - (3t^2 - 1)(2)}{(2t + 5)^2} = \frac{12t^2 + 30t - (6t^2 - 2)}{(2t + 5)^2} = \frac{6t^2 + 30t + 2}{(2t + 5)^2}. \] Use similar steps for the other functions. Just remember to identify the numerator and denominator clearly, take their derivatives, and apply the Quotient Rule formula! Happy differentiating!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad