Is \( \sqrt{32} \) an irrational number? yes no
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
Yes, \( \sqrt{32} \) is not an irrational number. In fact, \( \sqrt{32} \) simplifies to \( 4\sqrt{2} \) because \( 32 = 16 \times 2 \). Since \( \sqrt{2} \) is known to be an irrational number, multiplying it by the rational number 4 still leaves us with an irrational result. When we break it down further, you can see that \( 4\sqrt{2} \approx 4 \times 1.414 \), which is about 5.656. So whenever you encounter the square root of a non-perfect square and it doesn’t reduce to an integer, you’re likely dealing with an irrational number.
