Pregunta
upstudy study bank question image url

A \( 50-\mathrm{N} \) crate is pulled up a 5-m inclined plane by a worker at constant velocity. If the plane is inclined at an angle of \( 37^{\circ} \) to the horizontal and there exists a constant frictional force of 10 N between the crate and the surface, what is the force applied by the worker? 1) zero 2) 20 N 3) 30 N 4) 40 N 5) 50 N

Ask by Lynch Daniel. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The worker needs to apply a force of 40 N to pull the crate up the incline at a constant velocity.

Solución

We begin by analyzing the forces acting on the crate along the inclined plane. The crate's weight can be split into two components: one perpendicular to the plane and one parallel to the plane. The component parallel to the plane is given by:   Weight_parallel = mg × sin(θ) Given that the weight is 50 N and the angle of the incline is 37°, we have:   Weight_parallel = 50 N × sin(37°) Since sin(37°) ≈ 0.6 (more precisely, 0.6018 but 0.6 is often used for simplicity):   Weight_parallel ≈ 50 N × 0.6 = 30 N This component acts downward along the plane. Additionally, there is a constant frictional force of 10 N opposing the motion of the crate up the incline. Since the crate moves with constant velocity, the net force along the plane must be zero. Thus, the force applied by the worker (F_applied) must overcome both the gravitational component along the plane and the frictional force. This gives us:   F_applied = Weight_parallel + Friction   F_applied = 30 N + 10 N = 40 N Therefore, the force applied by the worker is 40 N. The correct answer is option 4) 40 N.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the force applied by the worker, we first need to calculate the forces acting on the crate. The weight of the crate can be broken down into two components: the force acting parallel to the incline (which is due to gravity) and the frictional force. The gravitational force acting down the incline can be calculated using the formula: \[ F_{\text{gravity}} = mg \sin(\theta) \] Here, \( m \) is the mass (which we can find as \( \frac{50 \, \text{N}}{9.81 \, \text{m/s}^2} \), but for our purposes, we only need \( F_{\text{gravity}} \)), \( g \) is the acceleration due to gravity, and \( \theta \) is the angle of inclination \( 37^\circ \). The frictional force between the crate and the inclined plane is given as \( 10 \, \text{N} \). The net force acting against the worker’s force is the sum of the gravitational force down the incline and the frictional force. Thus, the worker needs to apply enough force to balance these out, expressed as: \[ F_{\text{applied}} = F_{\text{gravity}} + F_{\text{friction}} \] Calculating \( F_{\text{gravity}} = 50 \sin(37^\circ) \approx 30 \, \text{N} \) (using \( \sin(37^\circ) \approx 0.6 \)), we find that: \[ F_{\text{applied}} = 30 \, \text{N} + 10 \, \text{N} = 40 \, \text{N} \] Therefore, the force applied by the worker is **40 N**, so the correct answer is 4) 40 N.

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad