Pregunta
upstudy study bank question image url

Given \( h(x)=3^{-x} \) and \( k^{-1}(x)=2 x^{2} \) for \( x \geq 0 \). A(0,57;0,53) is a point of intersection between \( h \) and \( k \). 4.1 Write down the equation of \( k \) in the form \( y=\ldots \) 4.2 Sketch the graphs of \( h \) and \( k \) on the same set of axes, clearly indicating the intercepts with the axes. 4.3 Write down the range of \( h \). 4.4 For which values of \( x \) is \( k(x) \leq h(x) \) ? 4.5 For which values of \( t \) will \( k(x)+t=h(x) \) have no real roots?

Ask by Griffiths Wheeler. in South Africa
Feb 15,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

4.1 \( k(x) = \sqrt{\frac{x}{2}} \) for \( x \geq 0 \). 4.2 Sketch the graphs of \( h(x) = 3^{-x} \) and \( k(x) = \sqrt{\frac{x}{2}} \) on the same axes. Label the y-intercept of \( h \) at (0,1) and both intercepts of \( k \) at (0,0). The curves intersect at approximately (0.57, 0.53). 4.3 The range of \( h \) is all positive real numbers, \( (0, \infty) \). 4.4 \( k(x) \leq h(x) \) for \( 0 \leq x \leq 0.57 \). 4.5 The equation \( k(x) + t = h(x) \) has no real roots when \( t > 1 \).

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Extra Insights

To determine \( k(x) \), we need to find its inverse relation from \( k^{-1}(x) = 2x^2 \). Therefore, if we express \( y = k^{-1}(x) \), this gives us: \( k(x) = \frac{1}{2\sqrt{x}} \) for \( x \geq 0 \). --- To solve for \( k(x) + t = h(x) \), we want the equation to have no real roots. For the function to have no intersection with the graph of \( h(x) = 3^{-x} \), \( k(x) + t \) must be greater than \( h(x) \) for all \( x \). This happens when \( t \) exceeds the maximum of \( h(x) \) since \( h(x) \to 0 \) as \( x \to \infty \). Thus, we set \( t > 3^{-0} - k(0) = 1 - 0 \). Therefore, \( t > 1 \) will yield no real roots for the equation \( k(x) + t = h(x) \). --- For further reading, you might explore the fascinating world of exponential functions and their inverses. Understanding these concepts will not only brighten your mathematical prowess but also reveal their numerous applications in real life, such as population growth models, radioactive decay, and in finance for calculating compound interest. On another note, diving deeper into the properties of functions can illuminate behaviors like monotonicity, which is essential in analyzing points of intersection. The study of calculus provides powerful tools, like derivatives, to help you understand the steepness of curves and helps you avoid common pitfalls in function analysis!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad