Question 12 Consider the following linear programming model. \[ \begin{array}{l} \text { minimise } z=3 x_{1}+2 x_{2} \\ \text { subject to } 2 x_{1}+x_{2}=6 \\ x_{1}-x_{2} \geq 0 \\ x_{1}, x_{2} \geq 0 \end{array} \] What is the optimal \( z \) ? 9 12 8 10
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To find the optimal \( z \), we first need to solve the constraints. The first constraint \( 2x_1 + x_2 = 6 \) can be rewritten to express \( x_2 \): \[ x_2 = 6 - 2x_1 \] Now, let's substitute \( x_2 \) into the second constraint \( x_1 - x_2 \geq 0 \): \[ x_1 - (6 - 2x_1) \geq 0 \implies 3x_1 - 6 \geq 0 \implies x_1 \geq 2 \] We now have the limits for \( x_1 \): \( x_1 \geq 2 \) and from the first constraint \( 2x_1 + x_2 = 6 \), let’s consider the feasible solution by plugging in \( x_1 = 2 \): \[ x_2 = 6 - 2(2) = 2 \] Now, substituting \( x_1 = 2 \) and \( x_2 = 2 \) into the objective function: \[ z = 3(2) + 2(2) = 6 + 4 = 10 \] Thus, the optimal \( z \) is 10.
