Pregunta
upstudy study bank question image url

14. A Cylindrical can has a height of 12 cm and a diameter of 6 cm . a) Calculate the volume. (show your formula) b) Calculate the surface area. Draw a sketch of the can. (show your formula)

Ask by Ayala Haynes. in South Africa
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The cylindrical can has a volume of approximately 339.29 cm³ and a surface area of approximately 282.74 cm².

Solución

To calculate the volume and surface area of the cylindrical can, we can use the following formulas: a) Volume of a cylinder: \[ V = \pi r^2 h \] b) Surface area of a cylinder: \[ A = 2\pi r^2 + 2\pi rh \] Given: - Height of the cylinder (\( h \)) = 12 cm - Diameter of the cylinder (\( d \)) = 6 cm - Radius of the cylinder (\( r \)) = \( \frac{d}{2} \) = 3 cm a) Calculate the volume: \[ V = \pi \times 3^2 \times 12 \] b) Calculate the surface area: \[ A = 2\pi \times 3^2 + 2\pi \times 3 \times 12 \] Let's calculate the volume and surface area using the given formulas. Calculate the value by following steps: - step0: Calculate: \(\pi \times 3^{2}\times 12\) - step1: Multiply the terms: \(9\pi \times 12\) - step2: Multiply the terms: \(108\pi \) a) The volume of the cylindrical can is approximately 339.29 cm³. b) Calculate the surface area: \[ A = 2\pi \times 3^2 + 2\pi \times 3 \times 12 \] Let's calculate the surface area. Calculate the value by following steps: - step0: Calculate: \(2\pi \times 3^{2}+2\pi \times 3\times 12\) - step1: Multiply the terms: \(18\pi +2\pi \times 3\times 12\) - step2: Multiply the terms: \(18\pi +72\pi \) - step3: Collect like terms: \(\left(18+72\right)\pi \) - step4: Add the numbers: \(90\pi \) b) The surface area of the cylindrical can is approximately 282.74 cm². The volume of the cylindrical can is approximately 339.29 cm³, and the surface area is approximately 282.74 cm².

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To calculate the volume of a cylindrical can, you can use the formula: **Volume (V) = πr²h** Where r is the radius (half of the diameter), and h is the height. For your can, the radius is 3 cm (6 cm / 2), so: V = π × (3 cm)² × 12 cm ≈ 339.12 cm³. For the surface area, the formula is: **Surface Area (A) = 2πr(h + r)** Again, using r = 3 cm and h = 12 cm: A = 2π × 3 cm × (12 cm + 3 cm) ≈ 282.74 cm². Imagine a nice cylindrical shape with the shiny metal can on your shelf, holding your favorite drink! 🥤 Did you know that the design of cylindrical cans isn't just about aesthetics? It's also engineered for optimal pressure distribution. Beverage cans are shaped to withstand internal pressures, making them strong yet lightweight, allowing for both efficacy in storage and durability during transport. Isn't it amazing how the simple design of a can is a feat of engineering?

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad