Use the general slicing method to find the volume of the following solid. The solid whose base is the region bounded by the curves \( y=4 x^{2} \) and \( y=5-x^{2} \), and whose cross sections through the solid perpendicular to the \( x \)-axis are squares The volume of the solid is \( \square \) cubic units. (Type an exact answer.)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
To find the volume of the solid with a square cross-section perpendicular to the \( x \)-axis, we first need to determine the area of the base region bounded by the curves \( y = 4x^2 \) and \( y = 5 - x^2 \). First, we find the points of intersection by setting the equations equal to each other: \( 4x^2 = 5 - x^2 \) Rearranging gives us: \( 5x^2 + 5 = 0 \) This can be solved as: \( 5x^2 = 5 \) \( x^2 = 1 \) \( x = \pm 1 \) The region of interest is bounded by \( x = -1 \) and \( x = 1 \). Next, the height of the square cross-section at a given \( x \) can be found by calculating the difference of the upper and lower curves: Height \( h(x) = (5 - x^2) - (4x^2) = 5 - 5x^2 \) Since the cross-section is a square, the area \( A \) of each square is: \( A(x) = (h(x))^2 = (5 - 5x^2)^2 \) Now, we can integrate this area from \( x = -1 \) to \( x = 1 \) to get the volume \( V \): \[ V = \int_{-1}^{1} (5 - 5x^2)^2 \, dx \] Expanding \( (5 - 5x^2)^2 \): \[ (5 - 5x^2)^2 = 25 - 50x^2 + 25x^4 \] Now, we integrate each term separately: \[ V = \int_{-1}^{1} (25 - 50x^2 + 25x^4) \, dx = \left[ 25x - \frac{50}{3}x^3 + \frac{25}{5}x^5 \right]_{-1}^{1} \] Calculating at the bounds: At \( x = 1 \): \[ 25(1) - \frac{50}{3}(1) + 5(1) = 25 - \frac{50}{3} + 5 = 30 - \frac{50}{3} = \frac{90 - 50}{3} = \frac{40}{3} \] At \( x = -1 \): \[ 25(-1) - \frac{50}{3}(-1) + 5(-1) = -25 + \frac{50}{3} - 5 = -30 + \frac{50}{3} = \frac{-90 + 50}{3} = \frac{-40}{3} \] Now, subtract the two results: \[ V = \frac{40}{3} - \left(\frac{-40}{3}\right) = \frac{40 + 40}{3} = \frac{80}{3} \] Thus, the volume of the solid is: \[ \boxed{\frac{80}{3}} \] cubic units.
