Pregunta
upstudy study bank question image url

Find the sum of the geometric series, if possible. \[ 3+9+27+81+\ldots \]

Ask by Lang Clark. in the United States
Nov 26,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The series diverges.

Solución

To find the sum of the geometric series \( 3 + 9 + 27 + 81 + \ldots \), we first identify the first term and the common ratio. The first term \( a \) is: \[ a = 3 \] Next, we find the common ratio \( r \). We can calculate \( r \) by dividing the second term by the first term: \[ r = \frac{9}{3} = 3 \] Now, we can express the series in a more general form. The series can be written as: \[ S = 3 + 3 \cdot 3 + 3 \cdot 3^2 + 3 \cdot 3^3 + \ldots \] This can be rewritten as: \[ S = 3(1 + 3 + 3^2 + 3^3 + \ldots) \] The series inside the parentheses is an infinite geometric series with first term \( 1 \) and common ratio \( 3 \). The formula for the sum of an infinite geometric series is given by: \[ S = \frac{a}{1 - r} \] where \( |r| < 1 \). In our case, the common ratio \( r = 3 \), which does not satisfy the condition \( |r| < 1 \). Therefore, the series diverges. Since the series diverges, we conclude that the sum of the series \( 3 + 9 + 27 + 81 + \ldots \) is: \[ \text{The series diverges.} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the sum of the geometric series \(3 + 9 + 27 + 81 + \ldots\), we start by identifying the first term (\(a\)) and the common ratio (\(r\)). Here, the first term \(a = 3\) and the common ratio \(r = \frac{9}{3} = 3\). This series is infinite and since the common ratio \(r = 3\) is greater than 1, the sum of the series diverges to infinity. Thus, the sum of the series is not possible in terms of a finite value; it can be expressed as: \[ S = \infty \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad