Pregunta
upstudy study bank question image url

2. Find the amount and the compound interest on \( \mathrm{N} 1,00,000 \) compounded quarterly for 9 months at the rate of \( 4 \% \) per annum.

Ask by Wells Mckenzie. in Nigeria
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The amount after 9 months is \( \mathrm{N} 1,03,030.10 \) and the compound interest is \( \mathrm{N} 3,030.10 \).

Solución

To find the amount and the compound interest on \( \mathrm{N} 1,00,000 \) compounded quarterly for 9 months at the rate of \( 4 \% \) per annum, we can use the formula for compound interest: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] where: - \( A \) is the amount after the given time period - \( P \) is the principal amount (initial amount) - \( r \) is the annual interest rate (in decimal form) - \( n \) is the number of times the interest is compounded per year - \( t \) is the time period in years Given: - Principal amount (\( P \)) = \( \mathrm{N} 1,00,000 \) - Annual interest rate (\( r \)) = \( 4 \% \) = \( 0.04 \) - Compounded quarterly, so \( n = 4 \) - Time period (\( t \)) = 9 months = \( \frac{9}{12} \) years = \( \frac{3}{4} \) years Substitute the given values into the formula to find the amount and the compound interest. Calculate the value by following steps: - step0: Calculate: \(100000\left(1+\frac{0.04}{4}\right)^{\frac{4\times 3}{4}}\) - step1: Reduce the fraction: \(100000\left(1+\frac{0.04}{4}\right)^{3}\) - step2: Divide the terms: \(100000\left(1+\frac{1}{100}\right)^{3}\) - step3: Add the numbers: \(100000\left(\frac{101}{100}\right)^{3}\) - step4: Simplify: \(100000\times \frac{101^{3}}{100^{3}}\) - step5: Rewrite the expression: \(10^{5}\times \frac{101^{3}}{10^{6}}\) - step6: Reduce the numbers: \(1\times \frac{101^{3}}{10}\) - step7: Multiply: \(\frac{101^{3}}{10}\) The amount after 9 months at a compound interest rate of \( 4 \% \) per annum compounded quarterly is \( \frac{101^{3}}{10} \) or approximately \( 103030.1 \). To find the compound interest, we subtract the principal amount from the amount: Compound Interest = Amount - Principal Amount Substitute the values to find the compound interest. Calculate the value by following steps: - step0: Calculate: \(103030.1-100000\) - step1: Subtract the numbers: \(3030.1\) The compound interest on \( \mathrm{N} 1,00,000 \) compounded quarterly for 9 months at the rate of \( 4 \% \) per annum is \( 3030.1 \) or approximately \( 3030.1 \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To calculate the compound interest on \( \mathrm{N} 1,00,000 \) compounded quarterly for 9 months at a 4% annual interest rate, we first need to determine the effective interest rate per quarter. The quarterly rate is \( \frac{4\%}{4} = 1\% \) per quarter. Since we are compounding for 9 months, this is equivalent to 3 quarters. The formula for compound interest is given by: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] Where: - \( A \) is the amount after time \( t \), - \( P \) is the principal amount (\( \mathrm{N} 1,00,000 \)), - \( r \) is the annual interest rate (0.04), - \( n \) is the number of times interest is compounded per year (4), - \( t \) is the time in years (0.75 for 9 months). Substituting the values: \[ A = 1,00,000 \left(1 + \frac{0.04}{4}\right)^{4 \times 0.75} \] \[ A = 1,00,000 \left(1 + 0.01\right)^{3} \] \[ A = 1,00,000 \left(1.01\right)^{3} \] \[ A = 1,00,000 \times 1.030301 \approx 1,03,030.10 \] The amount \( A \) after 9 months is approximately \( \mathrm{N} 1,03,030.10 \). To find the compound interest \( CI \), subtract the principal \( P \): \[ CI = A - P = 1,03,030.10 - 1,00,000 = 3,030.10 \] So, the compound interest earned is approximately \( \mathrm{N} 3,030.10 \).

preguntas relacionadas

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad