If \( 3 x-4 \leq f(x) \leq x^{2}-3 x+5 \) for \( x \geq 0 \), find \( \lim _{x \rightarrow 3} f(x) \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
To find \( \lim _{x \rightarrow 3} f(x) \), we first need to evaluate the bounds given: 1. The lower bound is \( 3x - 4 \). 2. The upper bound is \( x^2 - 3x + 5 \). Let's calculate the limits of both bounds as \( x \) approaches 3. For the lower bound: \[ \lim_{x \rightarrow 3} (3x - 4) = 3(3) - 4 = 9 - 4 = 5. \] For the upper bound: \[ \lim_{x \rightarrow 3} (x^2 - 3x + 5) = (3)^2 - 3(3) + 5 = 9 - 9 + 5 = 5. \] Since both the lower and upper limits converge to the same value: \[ \lim_{x \rightarrow 3} f(x) = 5. \] Thus, the final answer is: \[ \lim_{x \rightarrow 3} f(x) = 5. \]
