Pregunta
upstudy study bank question image url

Transformations Q1 \( \begin{array}{l}\text { Check the Plot Function box to graph } f(x)=\sin (x) \text {. Use the a-slider to graph the function } \\ f(x)=5 \sin (x) \text {. The value of a affects the } \\ \text { Use the interactive figure to find your answer. Use the left and right arrow keys to move } \\ \text { along a slider as needed. } \\ \text { Click here to launch the interactive figure. }\end{array} \) The value of a affects the 1

Ask by Peters Grant. in the United States
Dec 08,2024

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The value of \( a \) affects the amplitude of the sine wave, making it taller or shorter.

Solución

The value of \( a \) in the function \( f(x) = a \sin(x) \) affects the amplitude of the sine wave. 1. **Amplitude**: The amplitude is the maximum distance from the midline (y = 0) to the peak (or trough) of the wave. In this case, when \( a = 5 \), the amplitude of the function \( f(x) = 5 \sin(x) \) is 5. This means the graph will reach a maximum value of 5 and a minimum value of -5. 2. **Graph Behavior**: As you adjust the value of \( a \) using the slider, you will notice that: - If \( a > 1 \), the peaks and troughs of the sine wave will be higher and lower, respectively. - If \( a < 1 \), the peaks and troughs will be closer to the midline, resulting in a smaller amplitude. - If \( a = 0 \), the function will collapse to the x-axis, as \( f(x) = 0 \) for all \( x \). 3. **Period and Frequency**: The value of \( a \) does not affect the period or frequency of the sine function, which remains \( 2\pi \) for \( \sin(x) \). In summary, the value of \( a \) primarily affects the amplitude of the sine function, changing how "tall" or "short" the wave appears on the graph.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

The value of \( a \) in the function \( f(x) = a \sin(x) \) affects the amplitude of the sine wave. When \( a \) is increased, the peaks and troughs of the graph rise higher and fall lower compared to the standard sine function. For instance, in the case of \( f(x) = 5 \sin(x) \), the amplitude will be 5, meaning the graph will oscillate between 5 and -5, making it more pronounced and visually striking! Using transformations like this can be super handy in real-world applications such as sound waves and engineering. The amplitude impacts how loud a sound is; a higher amplitude means a louder sound! Similarly, in fields like electronics and signal processing, understanding amplitude can help manipulate wave functions to achieve desired outputs, making the study of transformations not just academic, but highly practical!

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad