13.13 \( \Delta \) ivetar бuvexท่s \( \sigma u v a ́ p \tau \eta \sigma \eta ~ f: ~ \mathbb{R} \rightarrow \mathbb{R} \mu \varepsilon \) \( \mathrm{f}(\mathrm{x}) \neq 0 \gamma \mathrm{l} \alpha \kappa \alpha \dot{\alpha} \theta \varepsilon \mathrm{x} \in \mathbb{R} \). a) \( \mathrm{N} \alpha \) ขлодоүїєєє то ópı: \[ \lim _{x \rightarrow-\infty} \frac{f(1) x^{5}-4 x^{3}+2 x-1}{f(3) x^{2}-5 x+3} \] ß) \( \mathrm{N} \alpha \alpha \pi о \delta \varepsilon i \xi \varepsilon \tau \varepsilon \) ó \( \tau \iota \eta \) \( \varepsilon \xi \) iowoŋः: \[ x f(x)=\left(x^{2}-4\right) e^{x} \]
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
To approach the limit problem you've presented, we can start by analyzing the degrees of the polynomial in the numerator and denominator. In this case, as \(x\) approaches \(-\infty\), the leading terms of the highest degree will dominate the behavior of the function. So, we would take the limit of \(\frac{f(1)x^5}{f(3)x^2}\) which simplifies to \(\frac{f(1)}{f(3)} x^3\). As \(x\) approaches \(-\infty\), this will tend to \(-\infty\) if \(f(1) \neq 0\). For the second function given, \(x f(x) = (x^2 - 4)e^x\), we can determine \(f(x)\) explicitly. By rearranging the equation, we find that \(f(x) = \frac{(x^2 - 4)e^x}{x}\). A good thing to check next is the behavior of \(f(x)\) as \(x\) approaches \(0\) or \(-\infty\), which can provide insights into the overall shape of the function and its trends across the real line. Don't forget to apply L'Hôpital's rule if you encounter an indeterminate form!
preguntas relacionadas
