Pregunta
upstudy study bank question image url

(3) Resuelua la avación polinominal, epresar la respuesta en forma gratica, en forma de intervalo y en forma de Jesiaguadad. \( -2+x^{2} \geq 3(x+0)-2 \)

Ask by Hart Parsons. in Ecuador
Jan 13,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

La solución de la desigualdad polinomial es: - **Forma gráfica:** La parábola \( y = x^{2} - 3x \) se encuentra por encima o en la línea x para \( x \leq 0 \) y \( x \geq 3 \). - **Intervalo:** \( (-\infty, 0] \cup [3, \infty) \) - **Jesiguadad:** \( x \leq 0 \) o \( x \geq 3 \)

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Beyond the Answer

Para resolver la desigualdad \( -2 + x^{2} \geq 3(x + 0) - 2 \), primero simplificamos el lado derecho: \( 3(x + 0) - 2 = 3x - 2 \). Ahora, tenemos la desigualdad \( -2 + x^{2} \geq 3x - 2 \). Si sumamos 2 a ambos lados, se simplifica a \( x^{2} \geq 3x \). Movemos todo a un lado para obtener la forma estándar: \( x^{2} - 3x \geq 0 \). Factorizando, encontramos \( x(x - 3) \geq 0 \). Ahora resolvemos la desigualdad: los puntos críticos vienen de igualar a cero, es decir, \( x = 0 \) y \( x = 3 \). La solución se agrupa en intervalos analizando el signo de \( x(x - 3) \) en los intervalos \( (-\infty, 0) \), \( (0, 3) \) y \( (3, \infty) \). La gráfica muestra que la desigualdad se cumple para \( x \leq 0 \) y \( x \geq 3 \). En notación de intervalo, la respuesta es \( (-\infty, 0] \cup [3, \infty) \). Finalmente, en forma de desigualdad, podemos expresar la solución como \( x \in (-\infty, 0] \cup [3, \infty) \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad