Given the arithmetk series \( 2+5+8+\cdots+89=k \) Calculate: 1. Number of terms in the series
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To determine the number of terms in the arithmetic series \( 2 + 5 + 8 + \cdots + 89 \), we can use the formula for the \( n \)-th term of an arithmetic series, which is given by: \[ a_n = a_1 + (n-1)d \] Here, \( a_1 = 2 \) (the first term) and \( d = 3 \) (the common difference). We set \( a_n = 89 \) and solve for \( n \): \[ 89 = 2 + (n-1) \cdot 3 \] \[ 89 - 2 = (n-1) \cdot 3 \] \[ 87 = (n-1) \cdot 3 \] \[ n-1 = \frac{87}{3} = 29 \] \[ n = 30 \] So, the number of terms in the series is \( \boxed{30} \).
