Pregunta
upstudy study bank question image url

Encuentra B tal que \( \mathrm{AB}=\mathrm{C} \). Si \( A=\left[\begin{array}{cc}-1 & 2 \\ 3 & 0\end{array}\right] \) y \( C=\left[\begin{array}{ll}5 & 3 \\ 1 & 4\end{array}\right] \) a. \( B=\left[\begin{array}{cc}1 / 3 & -4 / 3 \\ -8 / 3 & 13 / 6\end{array}\right] \) b. \( B=\left[\begin{array}{cc}1 / 3 & 4 / 3 \\ 8 / 3 & 13 / 6\end{array}\right] \) c. \( B=\left[\begin{array}{cc}1 / 3 & 8 / 3 \\ 8 / 3 & 13 / 2\end{array}\right] \) d. \( B=\left[\begin{array}{cc}-1 / 3 & 4 / 3 \\ 8 / 3 & -13 / 6\end{array}\right] \)

Ask by Howell Riley. in Colombia
Dec 03,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

La respuesta correcta es b. \( B = \left[\begin{array}{cc}1/3 & 4/3 \\ 8/3 & 13/6\end{array}\right] \).

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Bonus Knowledge

Para encontrar la matriz \( B \) que satisface la ecuación \( \mathrm{AB}=\mathrm{C} \), primero debemos calcular la inversa de la matriz \( A \). La inversa de \( A \) se puede calcular utilizando la fórmula para la inversa de una matriz \( 2 \times 2 \): \[ A^{-1}=\frac{1}{\text{det}(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \] donde \( A=\begin{bmatrix} a & b \\ c & d \end{bmatrix} \). El determinante \( \text{det}(A) \) es \( ad - bc \). Calculando la inversa de \( A \), y luego multiplicándola por \( C \) nos dará \( B \). Al realizar los cálculos, se obtiene que la opción correcta es la a. --- La matriz A tiene un significado interesante en varias aplicaciones. En la transformación de coordenadas, por ejemplo, puede representar rotaciones y escalados en gráficos computacionales. Así que cuando juegas un videojuego, matrices como \( A \) están detrás de muchas de las representaciones visuales. Aprovechar la propiedad de la inversa de matrices es fundamental en álgebra lineal. Asegúrate de practicar la multiplicación de matrices, ya que es fácil cometer errores, especialmente con signos y disposición de los elementos. ¡Así que manos a la obra y no te desanimes, cada error es una oportunidad para aprender!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad