c \( 13-\left(\frac{5}{6}+7 \div \frac{2}{3}\right) \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To solve the expression, we first need to tackle the operations inside the parentheses. We start with the division: \( 7 \div \frac{2}{3} \) is the same as \( 7 \times \frac{3}{2} = \frac{21}{2} \). Then, we add that to \( \frac{5}{6} \). To add \( \frac{5}{6} + \frac{21}{2} \), we first convert \( \frac{21}{2} \) to have a common denominator of 6. So it's \( \frac{21 \times 3}{2 \times 3} = \frac{63}{6} \). Now we can add: \( \frac{5}{6} + \frac{63}{6} = \frac{68}{6} = \frac{34}{3} \). Now, we substitute back into the original expression: \( c = 13 - \frac{34}{3} \). To subtract, we convert 13 into a fraction: \( 13 = \frac{39}{3} \). Now, we perform the subtraction: \( \frac{39}{3} - \frac{34}{3} = \frac{5}{3} \). So, \( c = \frac{5}{3} \)!
