derivative of the function \( H(x)=\frac{\sqrt{x^{2}-3}}{\left(x^{2}+7\right)^{2}} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Extra Insights
To find the derivative of the function \( H(x)=\frac{\sqrt{x^{2}-3}}{\left(x^{2}+7\right)^{2}} \), we will use the quotient rule, which states that if you have a function of the form \( \frac{u}{v} \), then its derivative \( H'(x) \) is given by: \[ H'(x) = \frac{u'v - uv'}{v^2} \] Here, \( u = \sqrt{x^2 - 3} \) and \( v = (x^2 + 7)^2 \). 1. First, find \( u' \): \[ u' = \frac{1}{2\sqrt{x^2 - 3}} \cdot 2x = \frac{x}{\sqrt{x^2 - 3}} \] 2. Next, find \( v' \): \[ v = (x^2 + 7)^2 \implies v' = 2(x^2 + 7) \cdot 2x = 4x(x^2 + 7) \] 3. Now, apply the quotient rule: \[ H'(x) = \frac{\left(\frac{x}{\sqrt{x^2 - 3}}\right)(x^2 + 7)^2 - \sqrt{x^2 - 3}(4x(x^2 + 7)}{(x^2 + 7)^4} \] 4. Simplifying gives: \[ H'(x) = \frac{x(x^2 + 7)^2 - 4x(x^2 - 3)(x^2 + 7)}{(x^2 + 7)^4 \sqrt{x^2 - 3}} \] This is the derivative of the function \( H(x) \).
