2.4. Use the cosine rule in \( \triangle \mathrm{POQ} \) to calculate the length of PQ in terms of \( \alpha \) and \( \beta \).
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Beyond the Answer
In triangle \( \triangle POQ \), we can let the sides opposite to angles \( \alpha \) and \( \beta \) be \( PQ \) and \( OP \) respectively. According to the cosine rule, we can express \( PQ \) as: \[ PQ^2 = OP^2 + OQ^2 - 2 \cdot OP \cdot OQ \cdot \cos(\angle POQ) \] Assuming \( OP = a \) and \( OQ = b \) (the lengths of the sides), and \(\angle POQ = \gamma\), which can be derived as \(\gamma = 180^\circ - \alpha - \beta\), the formula can be rewritten as: \[ PQ^2 = a^2 + b^2 - 2ab \cdot \cos(180^\circ - \alpha - \beta) \] Here, since \(\cos(180^\circ - \theta) = -\cos(\theta)\), we have: \[ PQ^2 = a^2 + b^2 + 2ab \cdot \cos(\alpha + \beta) \] Thus, the length of \( PQ \) in terms of \( \alpha \) and \( \beta \) can be derived as: \[ PQ = \sqrt{a^2 + b^2 + 2ab \cdot \cos(\alpha + \beta)} \] Voilà, you have the expression for \( PQ \)!
