Follow the proper order of operations to evaluate the following. \( \frac{-3\left(4^{3}-56\right)}{7-15} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
To tackle this problem, we should follow the order of operations, often remembered by the acronym PEMDAS (Parentheses, Exponents, Multiplication and Division (from left to right), Addition and Subtraction (from left to right)). First, let's simplify what's inside the parentheses: 1. Calculate \( 4^3 \) which is \( 64 \). 2. Then, perform \( 64 - 56 \) to get \( 8 \). Now the expression looks like this: \[ \frac{-3(8)}{7 - 15} \] Next up, we handle the denominator \( 7 - 15 \), which equals \( -8 \). So our expression now reads: \[ \frac{-3(8)}{-8} \] Next, multiply \(-3\) and \(8\) to arrive at \(-24\): \[ \frac{-24}{-8} \] Finally, divide \(-24\) by \(-8\), which results in \(3\). The final answer is \( 3 \).
