Pregunta
upstudy study bank question image url

Part 1 of 6 A projectile is launched at an angle of \( 45^{\circ} \) to the horizontal from 6 ft above the ground at an initial speed of \( 200 \mathrm{ft} / \mathrm{sec} \). Assume the x -axis is horizontal, the positive \( y \)-axis is vertical (opposite g ), the ground is horizontal, and only the gravitational force acts on the object. Answer parts a through d . a. Find the velocity and position vectors for \( \mathrm{t} \geq 0 \). The velocity vector is \( \mathrm{v}(\mathrm{t})=\langle\square \).

Ask by Martinez Daniels. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The velocity vector is \( \mathrm{v}(t) = \langle 100\sqrt{2}, 100\sqrt{2} - 32t \rangle \). The position vector is \( \mathrm{r}(t) = \langle 100\sqrt{2} \cdot t, 6 + 100\sqrt{2} \cdot t - 16t^2 \rangle \).

Solución

We begin with the given information: • Launch angle: 45° • Initial speed: 200 ft/sec • Initial position: (x, y) = (0, 6) ft • Gravitational acceleration: g = 32 ft/sec² (acting downward) Step 1. Resolve the initial velocity into horizontal and vertical components. Since the angle is 45°:   v₀ₓ = 200 cos(45°) = 200·(√2/2) = 100√2 ft/sec   v₀ᵧ = 200 sin(45°) = 200·(√2/2) = 100√2 ft/sec Step 2. Write the velocity vector v(t) for t ≥ 0. The horizontal motion has no acceleration, so:   vₓ(t) = 100√2 ft/sec The vertical motion is under constant acceleration –g = –32 ft/sec², so:   vᵧ(t) = 100√2 – 32t ft/sec Thus, the velocity vector is:   v(t) = ⟨100√2, 100√2 – 32t⟩ Step 3. Now, integrate the components to find the position vector r(t). For the horizontal component:   x(t) = ∫(100√2) dt = 100√2 · t + Cₓ Since x(0) = 0, we have Cₓ = 0. Thus, x(t) = 100√2 · t For the vertical component:   y(t) = ∫(100√2 – 32t) dt = 100√2 · t – 16t² + Cᵧ With y(0) = 6, we get Cᵧ = 6. Thus, y(t) = 6 + 100√2 · t – 16t² So, the position vector is:   r(t) = ⟨100√2 · t, 6 + 100√2 · t – 16t²⟩ Answer Summary: a. The velocity vector for t ≥ 0 is:   v(t) = ⟨100√2, 100√2 – 32t⟩ and the position vector is:   r(t) = ⟨100√2 · t, 6 + 100√2 · t – 16t²⟩

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the velocity vector for the projectile launched at \( 45^{\circ} \) with an initial speed of \( 200 \, \mathrm{ft/s} \), we can break down the initial velocity into its horizontal and vertical components. The horizontal component, \( v_{x}(0) \), is given by: \[ v_{x}(0) = v_0 \cdot \cos(45^{\circ}) = 200 \cdot \frac{\sqrt{2}}{2} = 100\sqrt{2} \, \mathrm{ft/s} \] The vertical component, \( v_{y}(0) \), is: \[ v_{y}(0) = v_0 \cdot \sin(45^{\circ}) = 200 \cdot \frac{\sqrt{2}}{2} = 100\sqrt{2} \, \mathrm{ft/s} \] Considering gravitational acceleration acting downward as \( g = 32 \, \mathrm{ft/s^{2}} \): The velocity vector is given as: \[ \mathbf{v}(t) = \langle v_x(t), v_y(t) \rangle = \langle 100\sqrt{2}, 100\sqrt{2} - 32t \rangle \] For the position vector, integrating the velocity with respect to time gives: \[ \mathbf{r}(t) = \langle v_x(t), h(t) \rangle = \langle 100\sqrt{2}t, 6 + (100\sqrt{2})t - 16t^2 \rangle \] In conclusion, the velocity vector is: \( \mathbf{v}(t) = \langle 100\sqrt{2}, 100\sqrt{2} - 32t \rangle \) and the position vector is: \( \mathbf{r}(t) = \langle 100\sqrt{2}t, 6 + (100\sqrt{2})t - 16t^2 \rangle \).

preguntas relacionadas

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad