Pregunta
upstudy study bank question image url

The one-to-one function \( h \) is defined below. \[ h(x)=\frac{2 x}{7 x-6} \] Find \( h^{-1}(x) \), where \( h^{-1} \) is the inverse of \( h \). Also state the domain and range of \( h^{-1} \) in interval notation. Domain of \( h^{-1}(x)=\square \) Range of \( h^{-1}= \)

Ask by Erickson Bowers. in the United States
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The inverse function is \( h^{-1}(x) = \frac{6x}{7x - 2} \). The domain of \( h^{-1}(x) \) is all real numbers except \( x = \frac{2}{7} \), which is written as \( (-\infty, \frac{2}{7}) \cup (\frac{2}{7}, \infty) \). The range of \( h^{-1}(x) \) is all real numbers except \( y = \frac{6}{7} \), which is written as \( (-\infty, \frac{6}{7}) \cup (\frac{6}{7}, \infty) \).

Solución

To find the inverse of the function \( h(x) = \frac{2x}{7x - 6} \), we will follow these steps: 1. **Replace \( h(x) \) with \( y \)**: \[ y = \frac{2x}{7x - 6} \] 2. **Swap \( x \) and \( y \)** to find the inverse: \[ x = \frac{2y}{7y - 6} \] 3. **Solve for \( y \)**: - Multiply both sides by \( 7y - 6 \): \[ x(7y - 6) = 2y \] - Distribute \( x \): \[ 7xy - 6x = 2y \] - Rearrange the equation to isolate \( y \): \[ 7xy - 2y = 6x \] - Factor out \( y \): \[ y(7x - 2) = 6x \] - Divide by \( 7x - 2 \): \[ y = \frac{6x}{7x - 2} \] 4. **Thus, the inverse function is**: \[ h^{-1}(x) = \frac{6x}{7x - 2} \] Next, we will determine the domain and range of \( h^{-1}(x) \). ### Domain of \( h^{-1}(x) \): The domain of \( h^{-1}(x) \) is determined by the values of \( x \) for which the function is defined. The function \( h^{-1}(x) = \frac{6x}{7x - 2} \) is undefined when the denominator is zero: \[ 7x - 2 = 0 \implies x = \frac{2}{7} \] Thus, the domain of \( h^{-1}(x) \) in interval notation is: \[ (-\infty, \frac{2}{7}) \cup (\frac{2}{7}, \infty) \] ### Range of \( h^{-1}(x) \): The range of \( h^{-1}(x) \) corresponds to the domain of the original function \( h(x) \). To find the domain of \( h(x) \), we set the denominator to zero: \[ 7x - 6 = 0 \implies x = \frac{6}{7} \] Thus, the domain of \( h(x) \) is: \[ (-\infty, \frac{6}{7}) \cup (\frac{6}{7}, \infty) \] Therefore, the range of \( h^{-1}(x) \) is: \[ (-\infty, \frac{6}{7}) \cup (\frac{6}{7}, \infty) \] ### Final Answer: - \( h^{-1}(x) = \frac{6x}{7x - 2} \) - Domain of \( h^{-1}(x) = (-\infty, \frac{2}{7}) \cup (\frac{2}{7}, \infty) \) - Range of \( h^{-1}(x) = (-\infty, \frac{6}{7}) \cup (\frac{6}{7}, \infty) \)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the inverse \( h^{-1}(x) \) of the function \( h(x)=\frac{2 x}{7 x-6} \), we first set \( y = h(x) \): \[ y = \frac{2 x}{7 x - 6} \] Next, we solve for \( x \) in terms of \( y \): \[ y(7x - 6) = 2x \\ 7xy - 6y = 2x \\ 7xy - 2x = 6y \\ x(7y - 2) = 6y \\ x = \frac{6y}{7y - 2} \] Thus, the inverse function is: \[ h^{-1}(x) = \frac{6x}{7x - 2} \] Now, to find the domain and range of \( h^{-1}(x) \), we examine \( h(x) \): 1. The original function \( h(x) \) has a vertical asymptote when the denominator \( 7x - 6 = 0 \), which gives \( x = \frac{6}{7} \). Thus, the range of \( h(x) \) excludes the value \( \frac{2}{7} \). 2. Therefore, since the range of \( h(x) \) is \( \mathbb{R} \setminus \{\frac{2}{7}\} \), the domain of \( h^{-1}(x) \) is also \( \mathbb{R} \setminus \{\frac{2}{7}\} \). Domain of \( h^{-1}(x) = (-\infty, \frac{2}{7}) \cup (\frac{2}{7}, \infty) \) Range of \( h^{-1}(x) = (-\infty, \frac{6}{7}) \cup (\frac{6}{7}, \infty) \)

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad