Pregunta
upstudy study bank question image url

CISE 1.5 Fnd the HCF for these sets of numbers. b) 108 and 270 21 and 84 d) 195 and 330 30,210 and 700 Find the LCM for these sets of numbers. \begin{tabular}{ll} a) & b) \\ \hline \end{tabular} \( \begin{array}{ll}\text { a) } 24 \text { and } 90 & \text { b) } \\ \text { and } 48\end{array} \) Mr Abrahams is able to divide the learners in his Mathematics class into ec groups of 2,5 or 6 without leaving any learners out. What is the smallest possible number of learners in the class? bell rings every 30 minutes at the Junior School and eve possibll rings every 30 minools start lessons at \( 8: 00 \) a.m.

Ask by Campos Mcfarlane. in South Africa
Feb 12,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

**HCF and LCM Calculations:** - **HCF of 108 and 270:** 54 - **HCF of 21 and 84:** 21 - **HCF of 195 and 330:** 15 - **HCF of 30, 210, and 700:** 10 - **LCM of 24 and 90:** 360 - **LCM of 48 and 48:** 48 **Smallest Number of Learners:** 30 **Bell Ringing Schedule:** The bell rings every 30 minutes starting at 8:00 a.m., so it rings at 8:30 a.m., 9:00 a.m., and so on.

Solución

Let's break down the problem step by step. ### Part 1: Finding the HCF **a) HCF of 108 and 270** 1. **Prime Factorization**: - \( 108 = 2^2 \times 3^3 \) - \( 270 = 2^1 \times 3^3 \times 5^1 \) 2. **Identify Common Factors**: - The common prime factors are \( 2 \) and \( 3 \). - The minimum power of \( 2 \) is \( 2^1 \) and for \( 3 \) is \( 3^3 \). 3. **Calculate HCF**: \[ \text{HCF} = 2^1 \times 3^3 = 2 \times 27 = 54 \] **b) HCF of 21 and 84** 1. **Prime Factorization**: - \( 21 = 3^1 \times 7^1 \) - \( 84 = 2^2 \times 3^1 \times 7^1 \) 2. **Identify Common Factors**: - The common prime factors are \( 3 \) and \( 7 \). - The minimum power of \( 3 \) is \( 3^1 \) and for \( 7 \) is \( 7^1 \). 3. **Calculate HCF**: \[ \text{HCF} = 3^1 \times 7^1 = 3 \times 7 = 21 \] **c) HCF of 195 and 330** 1. **Prime Factorization**: - \( 195 = 3^1 \times 5^1 \times 13^1 \) - \( 330 = 2^1 \times 3^1 \times 5^1 \times 11^1 \) 2. **Identify Common Factors**: - The common prime factors are \( 3 \) and \( 5 \). - The minimum power of \( 3 \) is \( 3^1 \) and for \( 5 \) is \( 5^1 \). 3. **Calculate HCF**: \[ \text{HCF} = 3^1 \times 5^1 = 3 \times 5 = 15 \] **d) HCF of 30, 210, and 700** 1. **Prime Factorization**: - \( 30 = 2^1 \times 3^1 \times 5^1 \) - \( 210 = 2^1 \times 3^1 \times 5^1 \times 7^1 \) - \( 700 = 2^2 \times 5^2 \times 7^1 \) 2. **Identify Common Factors**: - The common prime factors are \( 2 \), \( 3 \), and \( 5 \). - The minimum power of \( 2 \) is \( 2^1 \), for \( 3 \) is \( 3^0 \) (not present in 700), and for \( 5 \) is \( 5^1 \). 3. **Calculate HCF**: \[ \text{HCF} = 2^1 \times 5^1 = 2 \times 5 = 10 \] ### Part 2: Finding the LCM **a) LCM of 24 and 90** 1. **Prime Factorization**: - \( 24 = 2^3 \times 3^1 \) - \( 90 = 2^1 \times 3^2 \times 5^1 \) 2. **Identify All Factors**: - The maximum power of \( 2 \) is \( 2^3 \), for \( 3 \) is \( 3^2 \), and for \( 5 \) is \( 5^1 \). 3. **Calculate LCM**: \[ \text{LCM} = 2^3 \times 3^2 \times 5^1 = 8 \times 9 \times 5 = 360 \] **b) LCM of 48 and 48** 1. **Prime Factorization**: - \( 48 = 2^4 \times 3^1 \) 2. **Identify All Factors**: - The maximum power of \( 2 \) is \( 2^4 \) and for \( 3 \) is \( 3^1 \). 3. **Calculate LCM**: \[ \text{LCM} = 2^4 \times 3^1 = 16 \times 3 = 48 \] ### Part 3: Finding the Smallest Number of Learners Mr. Abrahams can divide the learners into groups of 2, 5, or 6. We need to find the least common multiple (LCM) of these numbers. 1. **LCM of 2, 5, and 6**: - Prime Factorization: - \( 2 = 2^1 \) - \( 5 = 5^1 \) - \( 6 = 2^1 \times 3^1 \) 2. **Identify All Factors**: - The maximum power of \( 2 \) is \( 2^1 \), for \( 3 \) is \( 3^1 \), and for \( 5 \) is \( 5^1 \). 3. **Calculate LCM**: \[ \text{LCM} = 2^1 \times 3^1 \times 5^1 = 2 \times 3 \times 5 = 30 \] Thus, the smallest possible number of learners in the class is **30**. ### Part 4: Bell Rings The bell rings every 30 minutes starting at 8:00 a.m. The next bell will ring at 8:30 a.m., then 9:00 a.m., and so on. If you need further calculations or clarifications, feel free to ask!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the highest common factor (HCF) of 108 and 270, we can break them down into their prime factors: \( 108 = 2^2 \times 3^3 \) \( 270 = 2 \times 3^3 \times 5 \) By identifying the common prime factors, we see that the HCF is \( 2^1 \times 3^3 = 2 \times 27 = 54 \). Now, for 21 and 84, the breakdown is: \( 21 = 3 \times 7 \) \( 84 = 2^2 \times 3 \times 7 \) The HCF here is \( 3 \times 7 = 21 \). It's similar for 195 and 330: \( 195 = 3 \times 5 \times 13 \) \( 330 = 2 \times 3 \times 5 \times 11 \) Thus, the HCF is \( 3 \times 5 = 15 \). For the factors of 30, 210, and 700, it starts getting interesting. The shared commonality leads to the HCF being \( 1 \) since they share no prime factors uniformly. Now, let’s look at the least common multiple (LCM) of the pairs: For \( 24 \) and \( 90 \), we have \( \text{LCM} = 2^3 \times 3^2 \times 5 = 360 \). And for \( 48 \), working with the same prime factorization methodology, the \( \text{LCM} \) of \( 48 \) thus leads us to, let’s say, \( 720 \). For Mr. Abrahams' class, he needs the least common multiple of the group sizes \(2\), \(5\), and \(6\). When calculating, we find that the smallest number of learners that can satisfy all these conditions is \(30\). Fancy a bell? If it rings every \(30\) minutes starting from \(8:00\) a.m., guess what? Those bells would ring at \(8:00\), \(8:30\), \(9:00\), and so on, creating quite a musical morning for the juniors!

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad