Solve the quadratic equation. \[ 3 x^{2}+9 x-1=0 \] Write one exact solution in each box. You can add or remove boxes. If there are no real solutions, remove all boxes.
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
To solve the quadratic equation \( 3x^{2} + 9x - 1 = 0 \), we can use the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 3 \), \( b = 9 \), and \( c = -1 \). First, let's calculate the discriminant: \[ b^2 - 4ac = 9^2 - 4 \cdot 3 \cdot (-1) = 81 + 12 = 93 \] Since the discriminant is positive, there are two distinct real solutions. Now, we can plug the values into the quadratic formula: \[ x = \frac{-9 \pm \sqrt{93}}{2 \cdot 3} = \frac{-9 \pm \sqrt{93}}{6} \] The two solutions are: \[ x_1 = \frac{-9 + \sqrt{93}}{6} \] \[ x_2 = \frac{-9 - \sqrt{93}}{6} \] So, the exact solutions are: First Box: \( \frac{-9 + \sqrt{93}}{6} \) Second Box: \( \frac{-9 - \sqrt{93}}{6} \)
