Lesson Check (6.G.3) 1. The coordinates of points \( M, N \), and \( P \) are \( M(-2,3), N(4,3) \), and \( P(5,-1) \). What coordinates for point \( Q \) make MNPQ a parallelogram?
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Extra Insights
To find the coordinates of point \( Q \) that will make \( MNPQ \) a parallelogram, we can use the property that the diagonals of a parallelogram bisect each other. The midpoints of segments \( MN \) and \( PQ \) must coincide. The midpoint of \( MN \) is at: \[ \left(\frac{-2 + 4}{2}, \frac{3 + 3}{2}\right) = \left(1, 3\right) \] Let the coordinates of point \( Q \) be \( (x,y) \). The midpoint of \( PQ \) can be calculated as: \[ \left(\frac{5 + x}{2}, \frac{-1 + y}{2}\right) \] Setting the midpoints equal gives us two equations: \[ \frac{5 + x}{2} = 1 \quad \text{and} \quad \frac{-1 + y}{2} = 3 \] Solving these: 1. From the first equation: \( 5 + x = 2 \implies x = -3 \) 2. From the second equation: \( -1 + y = 6 \implies y = 7 \) Thus, the coordinates for point \( Q \) that would complete the parallelogram \( MNPQ \) are \( Q(-3, 7) \).
