Pregunta
upstudy study bank question image url

Lesson Check (6.G.3) 1. The coordinates of points \( M, N \), and \( P \) are \( M(-2,3), N(4,3) \), and \( P(5,-1) \). What coordinates for point \( Q \) make MNPQ a parallelogram?

Ask by Luna Peters. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Point Q has coordinates (–1, –1).

Solución

One way to solve the problem is to use the fact that in a parallelogram, the diagonals bisect each other. This means that the midpoint of diagonal MP is the same as the midpoint of diagonal NQ. Step 1. Find the midpoint of MP.   M = (–2, 3) and P = (5, –1)   Midpoint = ((–2 + 5)/2, (3 + (–1))/2) = (3/2, 2/2) = (1.5, 1) Step 2. Let Q = (x, y). The midpoint of NQ (with N = (4, 3)) must equal (1.5, 1).   Midpoint of NQ = ((4 + x)/2, (3 + y)/2) Set this equal to (1.5, 1):   (4 + x)/2 = 1.5  →  4 + x = 3  →  x = –1   (3 + y)/2 = 1  →  3 + y = 2  →  y = –1 So, Q = (–1, –1). Alternatively, you could use the property that in a parallelogram, the vectors for opposite sides are equal. For example:   vector NP = P – N = (5 – 4, –1 – 3) = (1, –4)   Thus, vector MQ must also equal (1, –4). Since M = (–2, 3), adding the vector (1, –4) gives:   Q = M + (1, –4) = (–2 + 1, 3 – 4) = (–1, –1). Either method shows that the coordinates of point Q that make MNPQ a parallelogram are (–1, –1).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the coordinates of point \( Q \) that will make \( MNPQ \) a parallelogram, we can use the property that the diagonals of a parallelogram bisect each other. The midpoints of segments \( MN \) and \( PQ \) must coincide. The midpoint of \( MN \) is at: \[ \left(\frac{-2 + 4}{2}, \frac{3 + 3}{2}\right) = \left(1, 3\right) \] Let the coordinates of point \( Q \) be \( (x,y) \). The midpoint of \( PQ \) can be calculated as: \[ \left(\frac{5 + x}{2}, \frac{-1 + y}{2}\right) \] Setting the midpoints equal gives us two equations: \[ \frac{5 + x}{2} = 1 \quad \text{and} \quad \frac{-1 + y}{2} = 3 \] Solving these: 1. From the first equation: \( 5 + x = 2 \implies x = -3 \) 2. From the second equation: \( -1 + y = 6 \implies y = 7 \) Thus, the coordinates for point \( Q \) that would complete the parallelogram \( MNPQ \) are \( Q(-3, 7) \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad