Pregunta
upstudy study bank question image url

\begin{tabular}{l} A girl of mass \( m_{1}=60.0 \) kilograms springs from a trampoline with an initial \\ upward velocity of \( v_{i}=8.00 \) meters per second. At height \( h=2.00 \) meters \\ above the trampoline, the girl grabs a box of mass \( m_{2}=15.0 \) kilograms. ( \\ Eigure 1) \\ For this problem, use \( g=9.80 \) meters per second per second for the \\ magnitude of the acceleration due to gravily. \\ What is the maximum height \( h_{\text {max }} \) that the girl (with box) reaches? Measure \( h_{\text {max }} \) with respect to the top of the trampoline. \\ Express your answer numerically in meters. \\ Part \\ \hline\end{tabular}

Ask by Hobbs Robbins. in the United States
Mar 06,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The girl and the box reach a maximum height of approximately 2.82 meters above the trampoline.

Solución

Below is the step‐by‐step solution in markdown format. --- ### Step 1. Determine the Girl’s Speed at \( h = 2.00 \) m The girl starts from the trampoline with an upward speed of \[ v_i = 8.00\ \text{m/s}. \] At a height of \( 2.00 \) meters above the trampoline, we can find her speed \( v \) using energy conservation or the kinematics relation \[ v^2 = v_i^2 - 2g h. \] Plug in the given values: \[ v^2 = (8.00)^2 - 2(9.80)(2.00) = 64.0 - 39.2 = 24.8. \] Thus, the speed is \[ v = \sqrt{24.8} \approx 4.98\ \text{m/s}. \] --- ### Step 2. Apply Conservation of Momentum When the Girl Grabs the Box At the height of \( 2.00 \) m, the girl (mass \( m_1 = 60.0 \) kg) grabs a box (mass \( m_2 = 15.0 \) kg). Immediately after grabbing the box, by conservation of momentum the total momentum is conserved. Before grabbing the box, the momentum is \[ p_{\text{initial}} = m_1 \, v = 60.0 \times 4.98 \approx 298.8\ \text{kg·m/s}. \] After the collision the total mass is \[ m_{\text{total}} = m_1 + m_2 = 60.0 + 15.0 = 75.0\ \text{kg}. \] Let \( v_{\text{after}} \) be the new upward speed. Conservation of momentum gives \[ m_1 \, v = (m_1 + m_2) v_{\text{after}}, \] \[ v_{\text{after}} = \frac{60.0 \times 4.98}{75.0} \approx \frac{298.8}{75.0} \approx 3.98\ \text{m/s}. \] For simplicity, we can round this to \[ v_{\text{after}} \approx 4.00\ \text{m/s}. \] --- ### Step 3. Calculate the Additional Height Gained After the Collision After the collision, the combined mass rises with an initial speed of \( 4.00 \) m/s. The additional height \( \Delta h \) that the combined system will rise can be found using energy considerations (or the kinematic equation with final speed zero): \[ \Delta h = \frac{v_{\text{after}}^2}{2g}. \] Substitute the known values: \[ \Delta h = \frac{(4.00)^2}{2(9.80)} = \frac{16.0}{19.6} \approx 0.8163\ \text{m}. \] --- ### Step 4. Determine the Maximum Height with Respect to the Trampoline The maximum height reached above the trampoline is the sum of the height at collision and the additional height: \[ h_{\text{max}} = 2.00\ \text{m} + 0.8163\ \text{m} \approx 2.82\ \text{m}. \] --- ### Final Answer The maximum height \( h_{\text{max}} \) that the girl (with the box) reaches, measured with respect to the top of the trampoline, is \[ \boxed{2.82\ \text{meters}}. \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the maximum height \( h_{\text{max}} \) reached by the girl after catching the box, we can use the principle of conservation of momentum followed by conservation of energy. When the girl catches the box at height \( h = 2.00 \) m, we must first calculate her total mass and new velocity due to momentum conservation. The initial momentum before she grabs the box is: \[ p_{i} = m_{1}v_{i} = (60.0 \, \text{kg})(8.00 \, \text{m/s}) = 480.0 \, \text{kg m/s}. \] Assuming no external horizontal forces, after she catches the box, the total mass of the girl plus the box will be: \[ m_{total} = m_{1} + m_{2} = 60.0 \, \text{kg} + 15.0 \, \text{kg} = 75.0 \, \text{kg}. \] Using conservation of momentum: \[ p_{i} = p_{f} \implies 480.0 = (75.0)v_{f} \implies v_{f} = \frac{480.0}{75.0} = 6.4 \, \text{m/s}. \] Now, we need to compute the maximum height after catching the box using energy conservation. The potential energy at maximum height is given by: \[ PE = mgh = (75.0 \, \text{kg})(9.80 \, \text{m/s}^{2})h. \] The kinetic energy at \( h = 2.00 \) m right after catching the box is: \[ KE = \frac{1}{2} m_{total} v_{f}^2 = \frac{1}{2} (75.0)(6.4)^2. \] Calculating the above: \[ KE = \frac{1}{2} (75.0)(40.96) = 1536 \, \text{J}. \] Setting the kinetic energy equal to potential energy at the maximum height: \[ \frac{1}{2}(75.0)(6.4)^2 = (75.0)(9.80)(h + 2.00). \] Dividing both sides by \( 75.0 \): \[ \frac{1}{2}(6.4^2) = 9.80(h + 2). \] Calculating further: \[ \frac{1}{2}(40.96) = 9.80(h + 2) \implies 20.48 = 9.80(h + 2). \] Solving for \( h \): \[ h + 2 = \frac{20.48}{9.80} \implies h + 2 \approx 2.09 \implies h \approx 0.09\, \text{m}. \] Therefore, the maximum height \( h_{\text{max}} \) with respect to the trampoline is: \[ h_{\text{max}} = h + 2.00 = 0.09 + 2.00 = 2.09 \, \text{m}. \] The maximum height \( h_{\text{max}} \) that the girl (with the box) reaches is approximately \( \boxed{2.09} \, \text{meters} \).

preguntas relacionadas

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad