Pregunta
upstudy study bank question image url

\( 1 \leftarrow \quad \) Find the \( x \)-values of all points where the function has any relative extrema. Find the value(s) of any relative extrema. \[ f(x)=\frac{x^{2}-4 x+4}{x-6} \]

Ask by Willis Gibson. in the United States
Nov 18,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The critical points are \( x = 2 \) and \( x = 10 \). The relative extrema are a minimum of 0 at \( x = 2 \) and a maximum of 16 at \( x = 10 \).

Solución

To find the \( x \)-values of all points where the function has any relative extrema, we need to find the critical points of the function. The function given is: \[ f(x) = \frac{x^{2}-4x+4}{x-6} \] To find the critical points, we need to find the values of \( x \) where the derivative of the function is equal to zero or undefined. Let's find the derivative of the function using the quotient rule: \[ f'(x) = \frac{(x-6)(2x-4) - (x^{2}-4x+4)(1)}{(x-6)^{2}} \] Now, we need to find the values of \( x \) where \( f'(x) = 0 \) or \( f'(x) \) is undefined. Let's simplify the derivative: \[ f'(x) = \frac{(x-6)(2x-4) - (x^{2}-4x+4)}{(x-6)^{2}} \] Now, we need to find the values of \( x \) where \( f'(x) = 0 \) or \( f'(x) \) is undefined. Let's solve for \( f'(x) = 0 \): \[ (x-6)(2x-4) - (x^{2}-4x+4) = 0 \] Solving this equation will give us the critical points of the function. Once we have the critical points, we can determine the relative extrema by evaluating the function at these points. Let's solve the equation \( (x-6)(2x-4) - (x^{2}-4x+4) = 0 \) to find the critical points. Solve the quadratic equation by following steps: - step0: Solve by factoring: \(\left(x-6\right)\left(2x-4\right)-\left(x^{2}-4x+4\right)=0\) - step1: Remove the parentheses: \(\left(x-6\right)\left(2x-4\right)-x^{2}+4x-4=0\) - step2: Expand the expression: \(x^{2}-12x+20=0\) - step3: Factor the expression: \(\left(x-10\right)\left(x-2\right)=0\) - step4: Separate into possible cases: \(\begin{align}&x-10=0\\&x-2=0\end{align}\) - step5: Solve the equation: \(\begin{align}&x=10\\&x=2\end{align}\) - step6: Rewrite: \(x_{1}=2,x_{2}=10\) The critical points of the function are \( x = 2 \) and \( x = 10 \). Now, we need to evaluate the function at these critical points to determine the relative extrema. Let's substitute \( x = 2 \) and \( x = 10 \) into the function \( f(x) = \frac{x^{2}-4x+4}{x-6} \) to find the relative extrema. Evaluate the expression by following steps: - step0: Evaluate: \(\frac{x^{2}-4x+4}{x-6}\) - step1: Substitute: \(\frac{2^{2}-4\times 2+4}{2-6}\) - step2: Multiply the numbers: \(\frac{2^{2}-8+4}{2-6}\) - step3: Calculate: \(\frac{0}{2-6}\) - step4: Subtract the numbers: \(\frac{0}{-4}\) - step5: Divide the terms: \(0\) Substitute \( x=10 \) into the expression \( \frac{x^{2}-4x+4}{x-6} \). Evaluate the expression by following steps: - step0: Evaluate: \(\frac{x^{2}-4x+4}{x-6}\) - step1: Substitute: \(\frac{10^{2}-4\times 10+4}{10-6}\) - step2: Multiply the numbers: \(\frac{10^{2}-40+4}{10-6}\) - step3: Calculate: \(\frac{64}{10-6}\) - step4: Subtract the numbers: \(\frac{64}{4}\) - step5: Divide the terms: \(16\) The relative extrema of the function are: - At \( x = 2 \), the function has a relative minimum of 0. - At \( x = 10 \), the function has a relative maximum of 16.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the relative extrema of the function \( f(x)=\frac{x^{2}-4 x+4}{x-6} \), we first simplify the function. The numerator can be factored as \( (x-2)^2 \), so we have: \[ f(x) = \frac{(x-2)^2}{x-6} \] Next, we need to find the derivative \( f'(x) \) to locate the critical points where the relative extrema may occur. Using the quotient rule: \[ f'(x) = \frac{(x-6)(2(x-2)) - (x-2)^2(1)}{(x-6)^2} \] This simplifies to: \[ f'(x) = \frac{2(x-2)(x-6) - (x-2)^2}{(x-6)^2} \] Setting the numerator equal to zero to find critical points: \[ 2(x-2)(x-6) - (x-2)^2 = 0 \] Factoring out \( (x-2) \): \[ (x-2)(2(x-6) - (x-2)) = 0 \] This gives us \( x-2 = 0 \) or \( 2x - 12 - x + 2 = 0 \), leading to \( x = 2 \) or \( x = 10 \). Now we evaluate \( f \) at these critical points: 1. For \( x = 2 \): \[ f(2) = \frac{(2-2)^2}{2-6} = \frac{0}{-4} = 0. \] 2. For \( x = 10 \): \[ f(10) = \frac{(10-2)^2}{10-6} = \frac{8^2}{4} = \frac{64}{4} = 16. \] Thus, the relative extrema occur at \( x = 2 \) with a value of \( 0 \) and \( x = 10 \) with a value of \( 16 \). The function has a relative minimum at \( (2, 0) \) and a relative maximum at \( (10, 16) \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad