Pregunta
upstudy study bank question image url

Write the given expression in the form \( f(x)=a(x-h)^{2}+k \). Identify the vertex. \( f(x)=2-15 x-3 x^{2} \)

Ask by Ortiz Bird. in the United States
Dec 11,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The expression \( f(x) = 2 - 15x - 3x^2 \) can be rewritten as \( f(x) = -3\left(x + \frac{5}{2}\right)^2 + \frac{83}{4} \). The vertex of the parabola is at \(\left(-\frac{5}{2}, \frac{83}{4}\right)\).

Solución

To rewrite the expression \( f(x) = 2 - 15x - 3x^2 \) in the form \( f(x) = a(x-h)^2 + k \), we will first rearrange the terms and then complete the square. 1. Rearrange the expression: \[ f(x) = -3x^2 - 15x + 2 \] 2. Factor out \(-3\) from the quadratic terms: \[ f(x) = -3(x^2 + 5x) + 2 \] 3. Complete the square for the expression inside the parentheses. To do this, take half of the coefficient of \(x\) (which is \(5\)), square it, and add and subtract it inside the parentheses: - Half of \(5\) is \(\frac{5}{2}\). - Squaring it gives \(\left(\frac{5}{2}\right)^2 = \frac{25}{4}\). 4. Add and subtract \(\frac{25}{4}\) inside the parentheses: \[ f(x) = -3\left(x^2 + 5x + \frac{25}{4} - \frac{25}{4}\right) + 2 \] \[ = -3\left((x + \frac{5}{2})^2 - \frac{25}{4}\right) + 2 \] 5. Distribute \(-3\): \[ f(x) = -3(x + \frac{5}{2})^2 + \frac{75}{4} + 2 \] 6. Convert \(2\) to a fraction with a denominator of \(4\): \[ 2 = \frac{8}{4} \] So, \[ f(x) = -3(x + \frac{5}{2})^2 + \frac{75}{4} + \frac{8}{4} \] \[ = -3(x + \frac{5}{2})^2 + \frac{83}{4} \] Now, we have the expression in the form \( f(x) = a(x-h)^2 + k \): \[ f(x) = -3\left(x + \frac{5}{2}\right)^2 + \frac{83}{4} \] From this, we can identify: - \( a = -3 \) - \( h = -\frac{5}{2} \) - \( k = \frac{83}{4} \) The vertex of the parabola is given by the point \((h, k)\): \[ \text{Vertex} = \left(-\frac{5}{2}, \frac{83}{4}\right) \] Thus, the final answer is: \[ f(x) = -3\left(x + \frac{5}{2}\right)^2 + \frac{83}{4}, \quad \text{Vertex} = \left(-\frac{5}{2}, \frac{83}{4}\right) \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To rewrite the expression \( f(x) = 2 - 15x - 3x^2 \) in vertex form, we first rearrange it into standard form by factoring out \(-3\) from the \(x^2\) term and the linear term: \[ f(x) = -3(x^2 + 5x) + 2 \] Next, we need to complete the square inside the parentheses. We take half of the coefficient of \(x\), which is \(5\), divide it by \(2\), and square it: \[ \left(\frac{5}{2}\right)^2 = \frac{25}{4} \] Now, we can add and subtract \(\frac{25}{4}\) inside the parentheses: \[ f(x) = -3\left(x^2 + 5x + \frac{25}{4} - \frac{25}{4}\right) + 2 \] \[ = -3\left((x + \frac{5}{2})^2 - \frac{25}{4}\right) + 2 \] \[ = -3(x + \frac{5}{2})^2 + \frac{75}{4} + 2 \] \[ = -3(x + \frac{5}{2})^2 + \frac{75}{4} + \frac{8}{4} \] \[ = -3(x + \frac{5}{2})^2 + \frac{83}{4} \] Thus, the equation in vertex form is: \[ f(x) = -3\left(x + \frac{5}{2}\right)^{2} + \frac{83}{4} \] The vertex of the parabola represented by this function is the point \((h, k)\), which is: \[ \left(-\frac{5}{2}, \frac{83}{4}\right) \]

preguntas relacionadas

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Álgebra Mexico Feb 26, 2025
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad