Pregunta
upstudy study bank question image url

  1. Rules of 70 and 72 . The rules state that it takes about of years for money to double at i percent, compounded continuously, using whichever of 70 or 72 is easier to divide by i.
    a) Show that it takes years for money to double if it is invested at annual interest rater (in decimal form) compounded continuously.
b) Graph the functions
in the by viewing window
© Explain why these two rules of thumb for mental computations are reasonable.

Ask by Wells Stanley. in the United States
Mar 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(a) Derivation
To find out how long it takes for money to double with continuous compounding, we use the formula:
Setting , we get:
So, the time it takes for money to double is years.
(b) Graphing the Functions
We need to graph the following functions over the interval and :
These functions represent the exact doubling time and the Rule of 70 and Rule of 72 estimates.
© Explanation of the Rules
The exact doubling time is . The Rules of 70 and 72 estimate this as and respectively. These rules are reasonable because for typical interest rates (3% to 10%), the estimates are close to the exact value, making them useful for quick mental calculations.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Beyond the Answer

Getting to the nitty-gritty of the rules of 70 and 72, it’s fascinating to see how these simple formulas provide a quick way to estimate the doubling time for investments. The mathematical foundation behind this is rooted in continuous compounding, where, by solving for the doubling point, we find that years is indeed the time required for your investment to double, showing just how integral the natural logarithm is in growth scenarios!
Now, when it comes to practicality, these rules serve as mental shortcuts to gauge your investments without pulling out a calculator. For instance, if you know your interest rate is around 5%, using the Rule of 72 gives you a quick estimate of approximately years for your money to double. Pretty slick, huh? It’s an easy way to remind us that while compounding can seem tedious, with a bit of math magic, we can simplify it for our everyday financial decisions!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad