a) \( \frac{x-3}{3}-\frac{x-2}{2}+\frac{x+1}{6} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
To solve the expression \( \frac{x-3}{3}-\frac{x-2}{2}+\frac{x+1}{6} \), let's first find a common denominator, which is 6. Rewriting each fraction: - \( \frac{x-3}{3} = \frac{2(x-3)}{6} = \frac{2x-6}{6} \) - \( \frac{x-2}{2} = \frac{3(x-2)}{6} = \frac{3x-6}{6} \) - \( \frac{x+1}{6} \) remains the same. Now, we can combine these fractions: \[ \frac{2x-6 - (3x-6) + (x+1)}{6} = \frac{2x-6-3x+6+x+1}{6} \] Combining like terms gives us: \[ \frac{0x + 1}{6} = \frac{1}{6} \] So, the simplified expression is \( \frac{1}{6} \).
