Pregunta

Calculate the volume of the solid generated by revolving the region bounded by the curve \( y = x^2 \) and the line \( y = 4 \) around the x-axis.

Ask by Dawson Hobbs. in Nigeria
Jan 08,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The volume of the solid is \( \frac{256}{5} \pi \).

Solución

To calculate the volume of the solid generated by revolving the region bounded by the curve \( y = x^2 \) and the line \( y = 4 \) around the \( x \)-axis, we'll use the **washer method**. Here's a step-by-step explanation: 1. **Find the Points of Intersection:** First, determine where the curves \( y = x^2 \) and \( y = 4 \) intersect: \[ x^2 = 4 \implies x = \pm 2 \] So, the region of interest is between \( x = -2 \) and \( x = 2 \). 2. **Set Up the Washer Method:** When revolving around the \( x \)-axis, the washer has: - **Outer radius (\( R \))**: The distance from the \( x \)-axis to the line \( y = 4 \), which is constant at \( R = 4 \). - **Inner radius (\( r \))**: The distance from the \( x \)-axis to the curve \( y = x^2 \), which is \( r = x^2 \). The volume \( V \) is given by the integral: \[ V = \pi \int_{-2}^{2} \left( R^2 - r^2 \right) dx = \pi \int_{-2}^{2} \left( 4^2 - (x^2)^2 \right) dx = \pi \int_{-2}^{2} \left( 16 - x^4 \right) dx \] 3. **Simplify the Integral:** Recognize that the integrand \( 16 - x^4 \) is an even function, so we can simplify the integral by doubling the integral from 0 to 2: \[ V = 2\pi \int_{0}^{2} \left( 16 - x^4 \right) dx \] 4. **Compute the Integral:** \[ \int_{0}^{2} \left( 16 - x^4 \right) dx = \left[ 16x - \frac{x^5}{5} \right]_{0}^{2} = \left( 16(2) - \frac{2^5}{5} \right) - \left( 0 - 0 \right) = 32 - \frac{32}{5} = \frac{160}{5} - \frac{32}{5} = \frac{128}{5} \] 5. **Multiply by \( 2\pi \):** \[ V = 2\pi \times \frac{128}{5} = \frac{256}{5} \pi \] **Final Answer:** \[ \boxed{\dfrac{256}{5}\, \pi} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the volume of the solid generated by revolving the region bounded by the curve \( y = x^2 \) and the line \( y = 4 \) around the x-axis, we can use the disk method. First, we need to determine the points of intersection between the curve and the line: Set \( x^2 = 4 \): \[ x = \pm 2 \] The region of interest lies between \( x = -2 \) and \( x = 2 \). The volume \( V \) of the solid of revolution can be calculated using the formula: \[ V = \pi \int_{a}^{b} [f(x)]^2 \, dx \] In our case, \( f(x) \) represents the outer radius (the line) minus the inner radius (the parabola). Therefore, we have: \[ V = \pi \int_{-2}^{2} \left(4 - x^2\right) \, dx \] Now, we can compute the integral: 1. Calculate the integral: \[ \int (4 - x^2) \, dx = 4x - \frac{x^3}{3} \] 2. Evaluate from \( -2 \) to \( 2 \): \[ V = \pi \left[ \left(4(2) - \frac{(2)^3}{3}\right) - \left(4(-2) - \frac{(-2)^3}{3}\right) \right] \] Calculating each part: \[ = \pi \left[ (8 - \frac{8}{3}) - (-8 + \frac{8}{3}) \right] \] Simplifying the expression inside the brackets: \[ = \pi \left[ 8 - \frac{8}{3} + 8 - \frac{8}{3} \right] = \pi \left[ 16 - \frac{16}{3} \right] \] Finding a common denominator: \[ = \pi \left[ \frac{48}{3} - \frac{16}{3} \right] = \pi \left[ \frac{32}{3} \right] \] Thus, the volume is: \[ V = \frac{32\pi}{3} \] So, the volume of the solid generated by revolving the region around the x-axis is \( \frac{32\pi}{3} \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad