Pregunta
upstudy study bank question image url

Write an equation (a) in slope-intercept form and (b) in standard form for the line passing through \( (1,6) \) and perpendicular to \( 3 x+7 y=1 \). a) The equation of the line in slope-intercept form is (Type your answer in slope-intercept form. Use integers or fractions for any numbers in the equation.) b) The equation of the line in standard form is (Type your answer in standard form.)

Ask by Rojas Pritchard. in the United States
Feb 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

a) The equation of the line in slope-intercept form is \( y = \frac{7}{3}x + \frac{11}{3} \). b) The equation of the line in standard form is \( 7x - 3y = -11 \).

Solución

Step 1. Find the slope of the given line. The given line is 3x + 7y = 1. Solve for y:   7y = 1 − 3x   y = (1/7) − (3/7)x. Thus, the slope of the given line is –3/7. Step 2. Determine the slope of the line perpendicular to the given line. For perpendicular lines, the slopes are negative reciprocals. Hence, if m₁ = –3/7, then the slope of the perpendicular line is:   m = –1/(–3/7) = 7/3. Step 3. Write the equation in slope-intercept form (y = mx + b). The line we want passes through (1, 6) with slope 7/3. Using the point-slope form:   y − 6 = (7/3)(x − 1) Solve for y:   y = (7/3)x − (7/3) + 6 Write 6 as 18/3:   y = (7/3)x − (7/3) + (18/3)   y = (7/3)x + (11/3) Thus, the slope-intercept form is:   y = (7/3)x + (11/3). Step 4. Convert the equation to standard form. Start with:   y = (7/3)x + (11/3) Multiply every term by 3 to eliminate fractions:   3y = 7x + 11 Rearrange to get all terms on one side:   –7x + 3y = 11 It is conventional to have the coefficient of x positive. Multiply the entire equation by –1:   7x – 3y = −11 Thus, the standard form of the equation is:   7x – 3y = −11. Final Answers: a) In slope-intercept form: y = (7/3)x + (11/3) b) In standard form: 7x – 3y = −11

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the equation of the line passing through the point \( (1,6) \) and perpendicular to the given line, we first need to determine the slope of the given line. The equation of the line is \( 3x + 7y = 1 \). We can rearrange this into slope-intercept form ( \( y = mx + b \) ): 1. Start by isolating \( y \): \[ 7y = -3x + 1 \] \[ y = -\frac{3}{7}x + \frac{1}{7} \] From this, we see that the slope \( m \) of the given line is \( -\frac{3}{7} \). The slope of a line perpendicular to this line is the negative reciprocal, which is \( \frac{7}{3} \). Now we can use the point-slope form of a line, \( y - y_1 = m(x - x_1) \), to find the equation of the line we need. With point \( (1, 6) \) and slope \( \frac{7}{3} \): a) \[ y - 6 = \frac{7}{3}(x - 1) \] Simplifying this gives: \[ y - 6 = \frac{7}{3}x - \frac{7}{3} \] \[ y = \frac{7}{3}x + \frac{11}{3} \] Thus, the equation of the line in slope-intercept form is: \[ y = \frac{7}{3}x + \frac{11}{3} \] b) To convert this to standard form ( \( Ax + By = C \) ), we start with the slope-intercept form: \[ y = \frac{7}{3}x + \frac{11}{3} \] Multiply through by 3 to eliminate the fraction: \[ 3y = 7x + 11 \] Rearranging gives: \[ -7x + 3y = 11 \] To write it in standard form with positive \( A \): \[ 7x - 3y = -11 \] Thus, the equation of the line in standard form is: \[ 7x - 3y = -11 \]

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad