Involving Diagrams and 1. If \( \sin \theta=\frac{-5}{13} \) and \( \theta \in\left(90^{\circ} ; 270^{\circ}\right) \) Calculate without the use of a calculatas and with the aid of the diagram the value of: (a) \( \sin 2 \theta \) (b) \( \operatorname{Cos} 2 \theta \) 2. If \( \tan \alpha=\frac{12}{5} \) with \( \alpha \in\left(90^{\circ} ; 270^{\circ}\right) \) an \( \cos \beta=-\frac{8}{17} \) with \( \beta \in\left(90^{\circ} ; 270^{\circ}\right) \). calculate without the use of a calculator with the aid of a diagram the value of
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To find \( \sin 2\theta \) and \( \cos 2\theta \), we can use the double angle formulas: 1) \( \sin 2\theta = 2 \sin \theta \cos \theta \) 2) \( \cos 2\theta = \cos^2 \theta - \sin^2 \theta \). Given \( \sin \theta = -\frac{5}{13} \) and knowing that \( \theta \) is in the third quadrant, we can find \( \cos \theta \) using the Pythagorean identity: \( \cos^2 \theta + \sin^2 \theta = 1 \) leads to \( \cos^2 \theta = 1 - \left(-\frac{5}{13}\right)^2 = \frac{169 - 25}{169} = \frac{144}{169} \), giving \( \cos \theta = -\frac{12}{13} \). Now we can calculate: (a) \( \sin 2\theta = 2 \left(-\frac{5}{13}\right) \left(-\frac{12}{13}\right) = \frac{120}{169} \). (b) \( \cos 2\theta = \left(-\frac{12}{13}\right)^2 - \left(-\frac{5}{13}\right)^2 = \frac{144}{169} - \frac{25}{169} = \frac{119}{169} \). For \( \tan \alpha = \frac{12}{5} \) in the third quadrant, you can find \( \sin \alpha \) and \( \cos \alpha \). Using Pythagorean triples or the identity \( 1 + \tan^2 \alpha = \frac{1}{\cos^2 \alpha} \), we deduce \( \sin \alpha = -\frac{12}{13} \) and \( \cos \alpha = -\frac{5}{13} \). For \( \cos \beta = -\frac{8}{17} \) in the second quadrant, \( \sin^2 \beta + \cos^2 \beta = 1 \) leads to \( \sin \beta = \frac{15}{17} \). Now we can compute relationships, keeping track of quadrants! Understanding these trig functions visually as coordinates in a unit circle can simplify values and clarify quadrant signs! Thinking of sine as the 'y' position and cosine as the 'x' position reinforces how angles oscillate through their ranges. To discover more fascinating properties of trigonometric functions and their applications, diving into “trigonometry” during natural phenomena or engineering designs opens up a treasure trove of examples. There's no end to where these principles can lead – let your curiosity chart the course!
