Pregunta
upstudy study bank question image url

4. The decay of a radioactive compound is described by the second order differential equation: \[ y^{\prime \prime}+y^{\prime}-20 y=0 \] a) Find the general solution to this differential equation by solving the characteristic equation using the substitutions \( \lambda^{2}=y^{\prime \prime}, \lambda^{1}=y^{\prime} \) and \( \lambda^{0}=y \). (2 marks) b) Find the particular solution given that \( y(0)=2 \) and \( y^{\prime}(0)=-10 \).

Ask by Welch Crawford. in Australia
Mar 17,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

**(a) General Solution:** \[ y(t) = C_1 e^{4t} + C_2 e^{-5t} \] **(b) Particular Solution:** \[ y(t) = 2e^{-5t} \]

Solución

We are given the differential equation \[ y^{\prime\prime} + y^{\prime} - 20y = 0. \] **(a) General Solution** 1. Assume a solution of the form \( y = e^{\lambda t} \). Then, we have: \[ y^{\prime} = \lambda e^{\lambda t} \quad \text{and} \quad y^{\prime\prime} = \lambda^2 e^{\lambda t}. \] 2. Substituting into the differential equation gives: \[ \lambda^2 e^{\lambda t} + \lambda e^{\lambda t} - 20e^{\lambda t} = 0. \] 3. Factor out the common term \( e^{\lambda t} \) (which is never zero): \[ e^{\lambda t} \left( \lambda^2 + \lambda - 20 \right) = 0. \] Therefore, the characteristic equation is: \[ \lambda^2 + \lambda - 20 = 0. \] 4. Solve the quadratic equation using the quadratic formula: \[ \lambda = \frac{-1 \pm \sqrt{(1)^2 - 4(1)(-20)}}{2(1)} = \frac{-1 \pm \sqrt{1 + 80}}{2} = \frac{-1 \pm \sqrt{81}}{2}. \] 5. Since \(\sqrt{81} = 9\), the roots are: \[ \lambda = \frac{-1 + 9}{2} = 4 \quad \text{and} \quad \lambda = \frac{-1 - 9}{2} = -5. \] 6. Hence, the general solution is: \[ y(t)= C_1 e^{4t} + C_2 e^{-5t}, \] where \( C_1 \) and \( C_2 \) are arbitrary constants. **(b) Particular Solution** We are given the initial conditions: \[ y(0)=2 \quad \text{and} \quad y^{\prime}(0)=-10. \] 1. Substitute \( t=0 \) into the general solution: \[ y(0)= C_1 e^{0}+ C_2 e^{0}= C_1+C_2=2. \] This gives the equation: \[ C_1+C_2=2. \quad \text{(1)} \] 2. Differentiate the general solution: \[ y^{\prime}(t)= 4C_1 e^{4t} -5C_2 e^{-5t}. \] 3. Substitute \( t=0 \) into this derivative: \[ y^{\prime}(0)= 4C_1 - 5C_2= -10. \] This gives: \[ 4C_1-5C_2= -10. \quad \text{(2)} \] 4. Solve the system of equations (1) and (2): From (1): \[ C_1 = 2 - C_2. \] Substitute into (2): \[ 4(2 - C_2) - 5C_2 = -10. \] 5. Simplify: \[ 8 - 4C_2 - 5C_2 = -10 \quad \Rightarrow \quad 8 - 9C_2 = -10. \] 6. Solve for \( C_2 \): \[ -9C_2 = -18 \quad \Rightarrow \quad C_2 = 2. \] 7. Substitute \( C_2 = 2 \) into (1): \[ C_1+2=2 \quad \Rightarrow \quad C_1=0. \] Thus, the particular solution is: \[ y(t)= 0\cdot e^{4t} + 2e^{-5t} = 2e^{-5t}. \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To tackle the second-order differential equation \( y^{\prime \prime} + y^{\prime} - 20y = 0 \), we start by forming the characteristic equation. Substituting \( y^{\prime \prime} \) as \( \lambda^2 \), \( y^{\prime} \) as \( \lambda \), and \( y \) as \( 1 \), we get: \[ \lambda^2 + \lambda - 20 = 0. \] Now, we can solve this quadratic equation using the quadratic formula: \[ \lambda = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-1 \pm \sqrt{1 + 80}}{2} = \frac{-1 \pm 9}{2}. \] This gives us: \[ \lambda_1 = 4 \quad \text{and} \quad \lambda_2 = -5. \] Hence, the general solution of the differential equation is: \[ y(t) = C_1 e^{4t} + C_2 e^{-5t}, \] where \( C_1 \) and \( C_2 \) are constants to be determined by the initial conditions. Now, to find the particular solution using the conditions \( y(0) = 2 \) and \( y'(0) = -10 \): 1. Plugging \( t = 0 \) into the general solution: \[ y(0) = C_1 + C_2 = 2. \quad (1) \] 2. Next, we calculate \( y'(t) \): \[ y'(t) = 4C_1 e^{4t} - 5C_2 e^{-5t}. \] Plugging \( t = 0 \): \[ y'(0) = 4C_1 - 5C_2 = -10. \quad (2) \] Now we need to solve the system of equations given by (1) and (2): From (1), we have \( C_2 = 2 - C_1 \). Substituting this into (2): \[ 4C_1 - 5(2 - C_1) = -10, \] which simplifies to: \[ 4C_1 - 10 + 5C_1 = -10 \implies 9C_1 - 10 = -10 \implies 9C_1 = 0 \implies C_1 = 0. \] Then substituting \( C_1 \) back into (1): \[ 0 + C_2 = 2 \implies C_2 = 2. \] Now we have both constants. Therefore, the particular solution is: \[ y(t) = 0 \cdot e^{4t} + 2 \cdot e^{-5t} = 2 e^{-5t}. \] Thus, the answers are: a) \( y(t) = C_1 e^{4t} + C_2 e^{-5t} \) b) \( y(t) = 2 e^{-5t}. \)

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad