ebra 1 K.4 Find a missing coordinate using slope 507 A line that includes the points \( (-9, p) \) and \( (0,-10) \) has a slope of \( -\frac{1}{9} \). What is the value of \( p \) ? \[ p=\square \text { Video } \] Submit
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
To find the missing coordinate \( p \), we can use the slope formula \( m = \frac{y_2 - y_1}{x_2 - x_1} \). Here, \( (x_1, y_1) = (-9, p) \) and \( (x_2, y_2) = (0, -10) \). Plugging in the values and the slope \( -\frac{1}{9} \) gives us: \[ -\frac{1}{9} = \frac{-10 - p}{0 - (-9)} \implies -\frac{1}{9} = \frac{-10 - p}{9}. \] Cross-multiplying leads to \( -1 \cdot 9 = -9(-10 - p) \), simplifying to \( -9 = 90 + 9p \). Solving this will yield the value of \( p \). To solve for \( p \), first move the 90 to the left side: \[ -9 - 90 = 9p \implies -99 = 9p \implies p = -11. \] So the missing coordinate \( p \) is \( -11 \). Now let’s enter the answer: \[ p = -11 \]
