Pregunta
upstudy study bank question image url

85. The number of hours of daylight in Boston is given by \[ y=3 \sin \frac{2 \pi}{365}(x-79)+12 \text {, } \] where \( x \) is the number of days after January 1 . a. What is the amplitude of this function? b. What is the period of this function? c. How many hours of daylight are there on the longest day of the year? d. How many hours of daylight are there on the shortest day of the year? e. Graph the function for one period, starting on January 1 .

Ask by Carrillo Adkins. in the United States
Feb 22,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

a. The amplitude is 3. b. The period is 365 days. c. On the longest day, there are 15 hours of daylight. d. On the shortest day, there are 9 hours of daylight. e. The graph shows a sine wave ranging from 9 to 15 hours of daylight over 365 days, with peaks at the longest day and troughs at the shortest day.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Bonus Knowledge

The amplitude of the function \( y = 3 \sin \frac{2 \pi}{365}(x-79) + 12 \) is 3. This means that the number of hours of daylight varies by 3 hours above and below the average daylight of 12 hours (which is the vertical shift of the function). So the range of hours of daylight is from 9 hours to 15 hours. The period of the function is 365 days, derived from the coefficient \( \frac{2\pi}{365} \). This indicates that the cycle of daylight repeats annually, giving you a full year's experience from one January 1 to the next. To find out the hours of daylight on the longest day of the year, set \( \sin \) to 1, resulting in \( y = 3(1) + 12 = 15 \) hours on the summer solstice around June 21. Conversely, on the shortest day when \( \sin \) equals -1, \( y = 3(-1) + 12 = 9 \) hours, which occurs around December 21. To graph the function for one period, plot the sine wave starting at \( x = 0 \) (January 1) rising to 15 hours at \( x = 172 \) (around June 21), dipping to 9 hours at \( x = 355 \) (around December 21), and returning back to 12 hours on January 1 of the next year. The wave will have peaks and valleys reflecting the cyclical nature of seasons and daylight changes throughout the year.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad