Pregunta
upstudy study bank question image url

Find the prime factorization of 2025 . \( \square \) Hint

Ask by Bowen Franklin. in the United States
Nov 21,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The prime factorization of 2025 is \(3^4 \times 5^2\).

Solución

To find the prime factorization of 2025, we can start by dividing it by the smallest prime numbers. 1. **Check divisibility by 3**: The sum of the digits of 2025 is \(2 + 0 + 2 + 5 = 9\), which is divisible by 3. So, we can divide 2025 by 3: \[ 2025 \div 3 = 675 \] 2. **Continue with 675**: Again, check if 675 is divisible by 3. The sum of the digits is \(6 + 7 + 5 = 18\), which is also divisible by 3: \[ 675 \div 3 = 225 \] 3. **Continue with 225**: Check if 225 is divisible by 3. The sum of the digits is \(2 + 2 + 5 = 9\), which is divisible by 3: \[ 225 \div 3 = 75 \] 4. **Continue with 75**: Check if 75 is divisible by 3. The sum of the digits is \(7 + 5 = 12\), which is divisible by 3: \[ 75 \div 3 = 25 \] 5. **Continue with 25**: Now, 25 is not divisible by 3, so we check the next prime number, which is 5. Since 25 ends in 5, it is divisible by 5: \[ 25 \div 5 = 5 \] 6. **Finally, divide 5 by itself**: \[ 5 \div 5 = 1 \] Now we can summarize the prime factorization: \[ 2025 = 3^4 \times 5^2 \] Thus, the prime factorization of 2025 is: \[ \boxed{3^4 \times 5^2} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the prime factorization of 2025, start by recognizing that it ends in 5, so it's divisible by 5. Dividing, we have 2025 ÷ 5 = 405. Continuing, since 405 also ends in 5, we divide by 5 again to get 405 ÷ 5 = 81. Now, we can factor 81, which is \( 3^4 \) (since 81 = 3 × 3 × 3 × 3). Assembling these parts, we get the prime factorization of 2025 as 5^2 × 3^4. Next, it's interesting to note that prime factorization has real-world applications in cryptography, specifically in algorithms like RSA. By breaking down numbers into their prime components, cryptographers can create secure communication systems, ensuring data remains private and protected through the complexity of these factorizations.

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad