Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To evaluate the integral \( \int _ { | z - i | = 1 } \sin z \, dz \), we can use the fact that \(\sin z\) is an entire function. This means it is analytic everywhere in the complex plane, and hence on any closed contour, the integral of an analytic function is zero according to Cauchy's integral theorem. Since the circle \( |z - i| = 1 \) is a closed contour in the complex plane, we conclude that: \[ \int _ { | z - i | = 1 } \sin z \, dz = 0. \] It's as simple as that! The integral around this circular path evaluates to zero due to the properties of analytic functions.
preguntas relacionadas
