Pregunta
upstudy study bank question image url

The probability that a student chosen at random from a class has brown hair is \( \frac{7}{13} \). The probability that they have ginger hair is \( \frac{5}{26} \). What is the probability that a student chosen from the class at random has either brown hair or ginger hair? Give your answer as a fraction.

Ask by Lynch Guzman. in the United Kingdom
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The probability that a student has either brown hair or ginger hair is \( \frac{19}{26} \).

Solución

Given: - The probability of a student having brown hair is \( \frac{7}{13} \). - The probability of a student having ginger hair is \( \frac{5}{26} \). We need to find the probability that a student chosen at random from the class has either brown hair or ginger hair. To find the probability of either event happening, we add the probabilities of the individual events. Therefore, the probability of a student having either brown hair or ginger hair is: \[ \frac{7}{13} + \frac{5}{26} \] Let's calculate this. Calculate the value by following steps: - step0: Calculate: \(\frac{7}{13}+\frac{5}{26}\) - step1: Reduce fractions to a common denominator: \(\frac{7\times 2}{13\times 2}+\frac{5}{26}\) - step2: Multiply the numbers: \(\frac{7\times 2}{26}+\frac{5}{26}\) - step3: Transform the expression: \(\frac{7\times 2+5}{26}\) - step4: Multiply the numbers: \(\frac{14+5}{26}\) - step5: Add the numbers: \(\frac{19}{26}\) The probability that a student chosen at random from the class has either brown hair or ginger hair is \( \frac{19}{26} \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the probability that a student has either brown hair or ginger hair, we can add the probabilities of each event since they are mutually exclusive. The probability of brown hair is \( \frac{7}{13} \) and the probability of ginger hair is \( \frac{5}{26} \). First, we need a common denominator to add these fractions. The least common multiple of 13 and 26 is 26. We convert \( \frac{7}{13} \) to a fraction with a denominator of 26: \[ \frac{7}{13} = \frac{7 \times 2}{13 \times 2} = \frac{14}{26} \] Now we can add: \[ \frac{14}{26} + \frac{5}{26} = \frac{14 + 5}{26} = \frac{19}{26} \] Therefore, the probability that a student chosen from the class at random has either brown hair or ginger hair is \( \frac{19}{26} \).

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad