Pregunta
upstudy study bank question image url

\( 1 \leftarrow \quad \begin{array}{l}\text { A set of constraints and a profit function are given. Answer } \\ \text { parts (a) and (b). } \\ 3 x+4 y \geq 20 \\ 6 x+3 y \leq 30 \\ x \geq 2 \\ y \geq 2 \\ P=2.67 x+1.32 y \\ \text { a) Graph the constraints, shade the feasible region, and } \\ \text { determine its vertices. }\end{array} \)

Ask by Colon Pritchard. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The feasible region is a triangle with vertices at (2, 6), (2, 3.5), and (4, 2).

Solución

We are given the system of constraints   1) 3x + 4y ≥ 20   2) 6x + 3y ≤ 30   3) x ≥ 2   4) y ≥ 2 with the profit function P = 2.67x + 1.32y. In part (a) we need to graph these constraints, shade the feasible region, and determine its vertices. Let’s go step by step. ──────────────────────────── Step 1. Rewrite the constraint boundaries as equalities: • Boundary of (1): 3x + 4y = 20   Solve for y: y = (20 – 3x)/4 • Boundary of (2): 6x + 3y = 30   Solve for y: y = (30 – 6x)/3 = 10 – 2x • Boundaries (3) and (4) are the vertical line x = 2 and the horizontal line y = 2, respectively. ──────────────────────────── Step 2. Determine where the “sides” of the feasible region lie: • Constraint (1) is “≥”, so the feasible region lies on or above the line y = (20 – 3x)/4. • Constraint (2) is “≤”, so the region lies on or below the line y = 10 – 2x. • Constraints (3) and (4) require that we are to the right of x = 2 and above y = 2. ──────────────────────────── Step 3. Find the Intersection Points (Vertices) a) Intersection of 3x + 4y = 20 and 6x + 3y = 30:   Solve the system:    3x + 4y = 20     (Equation A)    6x + 3y = 30     (Equation B) Multiply Equation A by 2:   6x + 8y = 40     (Equation A′) Subtract Equation B from Equation A′:   (6x + 8y) – (6x + 3y) = 40 – 30   5y = 10  ⇒ y = 2 Substitute y = 2 into Equation A:   3x + 4(2) = 20  ⇒ 3x + 8 = 20  ⇒ 3x = 12  ⇒ x = 4 Thus, one vertex is (4, 2). b) Intersection of 3x + 4y = 20 and x = 2:   Substitute x = 2 into 3x + 4y = 20:    3(2) + 4y = 20  ⇒ 6 + 4y = 20  ⇒ 4y = 14  ⇒ y = 3.5 This gives the vertex (2, 3.5). c) Intersection of 6x + 3y = 30 and x = 2:   Substitute x = 2 into 6x + 3y = 30:    6(2) + 3y = 30  ⇒ 12 + 3y = 30  ⇒ 3y = 18  ⇒ y = 6 This gives the vertex (2, 6). ──────────────────────────── Step 4. Check the Constraint y = 2 Although we already have the line y = 2 as a boundary, its intersection with other constraints has given us (4, 2) (which we already found as the intersection of the two non-vertical/horizontal lines) so no additional vertex is needed here. ──────────────────────────── Step 5. Sketching the Graph 1. Draw the line 3x + 4y = 20.   • For x=0, 4y = 20 ⇒ y = 5.   • For y=0, 3x = 20 ⇒ x ≈ 6.67.   Shade above this line (since 3x + 4y should be ≥ 20). 2. Draw the line 6x + 3y = 30.   • For x=0, 3y = 30 ⇒ y = 10.   • For y=0, 6x = 30 ⇒ x = 5.   Shade below this line (since 6x + 3y should be ≤ 30). 3. Draw the vertical line x = 2 and the horizontal line y = 2.   Shade to the right of x = 2 and above y = 2. The feasible region is the area that simultaneously satisfies all these conditions. When plotted, you will see that the region is a triangle with vertices at   (2, 6), (2, 3.5), and (4, 2). ──────────────────────────── Final Answer for Part (a): The feasible region is the triangular region bounded by the lines   x = 2, y = (20 – 3x)/4, and y = 10 – 2x. Its vertices are:   (2, 6), (2, 3.5), and (4, 2). These are the points you would plot and label when drawing the graph.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To tackle this problem, let's start by graphing the constraints you've provided. First, each inequality can be converted into an equation to find the boundary lines: 1. For \(3x + 4y = 20\): - When \(x = 0\), \(y = 5\) (point: \( (0,5) \)). - When \(y = 0\), \(x = \frac{20}{3} \approx 6.67\) (point: \( (6.67,0) \)). 2. For \(6x + 3y = 30\): - When \(x = 0\), \(y = 10\) (point: \( (0,10) \)). - When \(y = 0\), \(x = 5\) (point: \( (5,0) \)). Now let's also consider the vertical and horizontal constraints: - \(x \geq 2\) gives us a vertical line at \(x = 2\). - \(y \geq 2\) gives us a horizontal line at \(y = 2\). 1. Plot these equations on a graph. 2. Identify the area that satisfies all inequalities (shading the feasible region). It’s where all shaded areas overlap. 3. Now, find the vertices by determining the coordinates where the lines intersect. The possible vertices might occur at coordinates such as: - Intersection of \(3x + 4y = 20\) and \(6x + 3y = 30\), - Intersection of \(x = 2\) with other lines, - Intersection of \(y = 2\) with other lines. Once vertices are identified, record their coordinates for further computation. In part (b), we'll evaluate the profit function, \(P = 2.67x + 1.32y\), at each vertex to find which point maximizes it. Happy graphing! 🎉

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad