Pregunta
upstudy study bank question image url

Suppose that the manufacturer of a gas clothes dryer has found that when the unit price is \( p \) dollars, the revenue \( R \) (in dollars) is \( R(p)=-4 p^{2}+12,000 p \). (a) At what prices \( p \) is revenue zero? (b) For what range of prices will revenue exceed \( \$ 800,000 \) ? (a) At what prices \( p \) is revenue zero? The revenue equals zero when p is \( \$ 0,3000 \). (Use a comma to separate answers, but do not use commas in any individual numbers.) (b) For what range of prices will revenue exceed \( \$ 800,000 \) ? (Type your answer in interval notation. Round to the nearest cent as needed.)

Ask by George Rodriguez. in the United States
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(a) Revenue is zero at prices \( p = 0 \) and \( p = 3000 \). (b) Revenue exceeds \$800,000 for prices in the range \( (1047.06, 1952.94) \).

Solución

To solve the problem, we will follow the steps outlined: ### Part (a): Finding Prices \( p \) Where Revenue is Zero The revenue function is given by: \[ R(p) = -4p^2 + 12000p \] To find the prices \( p \) where revenue is zero, we set \( R(p) \) equal to zero: \[ -4p^2 + 12000p = 0 \] We can factor out \( p \): \[ p(-4p + 12000) = 0 \] This gives us two solutions: 1. \( p = 0 \) 2. \( -4p + 12000 = 0 \) Now, we solve for \( p \) in the second equation: \[ -4p + 12000 = 0 \implies 4p = 12000 \implies p = \frac{12000}{4} = 3000 \] Thus, the prices \( p \) where revenue is zero are: \[ p = 0, 3000 \] ### Part (b): Finding Range of Prices Where Revenue Exceeds \( 800,000 \) We need to find the range of prices \( p \) such that: \[ R(p) > 800000 \] Setting up the inequality: \[ -4p^2 + 12000p > 800000 \] Rearranging gives: \[ -4p^2 + 12000p - 800000 > 0 \] To simplify, we can divide the entire inequality by -4 (remember to reverse the inequality sign): \[ p^2 - 3000p + 200000 < 0 \] Next, we will find the roots of the quadratic equation \( p^2 - 3000p + 200000 = 0 \) using the quadratic formula: \[ p = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1 \), \( b = -3000 \), and \( c = 200000 \): \[ p = \frac{3000 \pm \sqrt{(-3000)^2 - 4 \cdot 1 \cdot 200000}}{2 \cdot 1} \] Calculating the discriminant: \[ (-3000)^2 - 4 \cdot 1 \cdot 200000 = 9000000 - 800000 = 820000 \] Now substituting back into the quadratic formula: \[ p = \frac{3000 \pm \sqrt{820000}}{2} \] Calculating \( \sqrt{820000} \): \[ \sqrt{820000} \approx 905.88 \] Now substituting this value back: \[ p = \frac{3000 \pm 905.88}{2} \] Calculating the two roots: 1. \( p_1 = \frac{3000 + 905.88}{2} \approx \frac{3905.88}{2} \approx 1952.94 \) 2. \( p_2 = \frac{3000 - 905.88}{2} \approx \frac{2094.12}{2} \approx 1047.06 \) Thus, the roots are approximately \( p_1 \approx 1952.94 \) and \( p_2 \approx 1047.06 \). The quadratic \( p^2 - 3000p + 200000 < 0 \) is satisfied between the roots: \[ (1047.06, 1952.94) \] ### Final Answers (a) The prices \( p \) where revenue is zero are: \[ 0, 3000 \] (b) The range of prices where revenue exceeds \( 800,000 \) is: \[ (1047.06, 1952.94) \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve this, let's start with the revenue function given: \[ R(p) = -4p^2 + 12,000p \] (a) To find the prices \( p \) when revenue \( R \) is zero, we set the equation to zero: \[ 0 = -4p^2 + 12,000p \] Factoring out \( p \): \[ p( -4p + 12,000) = 0 \] This gives us two solutions: 1. \( p = 0 \) 2. \( -4p + 12,000 = 0 \Rightarrow 4p = 12,000 \Rightarrow p = 3,000 \) So, the revenue equals zero when \( p \) is \( 0, 3000 \). (b) To find the prices for which revenue exceeds \( 800,000 \), we can set up the inequality: \[ -4p^2 + 12,000p > 800,000 \] Rearranging gives: \[ -4p^2 + 12,000p - 800,000 > 0 \] Dividing the entire inequality by -4 (flipping the inequality): \[ p^2 - 3,000p + 200,000 < 0 \] Next, we can find the roots using the quadratic formula: \[ p = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here \( a = 1, b = -3000, c = 200000 \): Calculating the discriminant: \[ (-3000)^2 - 4(1)(200000) = 9000000 - 800000 = 820000 \] Finding the roots: \[ p = \frac{3000 \pm \sqrt{820000}}{2} \] Calculating \( \sqrt{820000} \approx 905.88 \): The roots are approximately: 1. \( p \approx 3000 - 452.94 \approx 2547.06 \) 2. \( p \approx 3000 + 452.94 \approx 3452.94 \) Therefore, the range of prices where revenue exceeds \( 800,000 \) is: \[ (2547.06, 3452.94) \] So the final answers are: (a) \( 0, 3000 \) (b) \( (2547.06, 3452.94) \)

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad