Pregunta
upstudy study bank question image url

Analyze this conic section to answer the questions below. \( x^{2}=16(y-6) \) Parabola Ellipse Hyperbola Where is the center of this conic section? Select the correct choice below and fill in any answer boxes in your choice. A. Type an ordered pair.) What are the values of a and b for this conic section? Select the correct choice below and fill in any answer boxes in your choice. A. a = and b does not have a value B. a does not have a value anlibo =

Ask by Weber Powers. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The conic is a Parabola. It has a vertex at (0, 6). Option A is correct: a = 4 and b does not have a value.

Solución

We start with the given equation:   x² = 16(y – 6) Step 1. Identify the Conic Section The equation is of the form   (x – h)² = 4p (y – k) which describes a parabola that opens either upward (if p > 0) or downward (if p < 0). Here h = 0 and k = 6, and comparing:   4p = 16 → p = 4. So the parabola opens upward. Thus, the correct choice is: Parabola. Step 2. Center (or Vertex) of the Conic Section In a parabola, there is no “center” like there is for ellipses or hyperbolas; it has a vertex which serves as the “turning point” of the graph. In the equation above, the vertex is located at (h, k), which is (0, 6). So the correct response about the center is to note that a parabola does not have a center. (If your answer box expects an ordered pair for a “center”, you should instead indicate that the parabola has a vertex at (0, 6), not a center.) Step 3. Values of a and b for This Conic Section For ellipses and hyperbolas, we typically define both a and b. However, for a parabola, only one parameter (related to the distance from the vertex to the focus, often denoted as p) is defined; there is no second parameter b. The given answer choices are:  A. a = ___ and b does not have a value  B. a does not have a value and b = ___ Because we are working with a parabola, we choose option A. Here, the coefficient 16 corresponds to 4p so that p = 4. Since some texts may denote “a” as the distance parameter for a parabola (though the identifying letter is usually p), we interpret the answer as:   a = 4 and b does not have a value. Final Answers: 1. The conic is a Parabola. 2. There is no center; the vertex is (0, 6). 3. Option A is correct: a = 4 and b does not have a value.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

This equation \( x^{2} = 16(y - 6) \) represents a parabola that opens upwards. In this form, you can see that it is in the standard form \( x^{2} = 4p(y - k) \), where \( (h, k) \) is the vertex of the parabola. Here, the vertex is at the point \( (0, 6) \), making it the center of the parabola. For this conic section, the value of \( a \) is related to the distance from the vertex to the focus, which is \( p \), where \( 4p = 16 \). Therefore, \( p = 4 \), hence \( a = 4 \) and \( b \) does not have a value since parabolas do not have a major and minor axis like ellipses or hyperbolas. So, the answers are: - Center at (0, 6). - A. a = 4 and b does not have a value.

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad