\( 4 \operatorname{tin} \theta=-3 \) and \( \cos \theta \) is positive, whe a slated ro coleulate the value of ? \( 1 \quad \sin \theta+3 \cot \theta \) \( 2 \quad 25 \cos ^{2} \theta \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
To solve the equation \( 4 \operatorname{tan} \theta = -3 \), we first simplify it to find \( \tan \theta = -\frac{3}{4} \). Since \( \cos \theta \) is positive, this places \( \theta \) in the fourth quadrant, where sine is negative. 1) To calculate \( \sin \theta + 3 \cot \theta \), we find \( \sin \theta \) and \( \cot \theta \). Using the Pythagorean identity, we calculate \( \sin \theta = -\frac{3}{5} \) and \( \cot \theta = -\frac{4}{3} \). Thus, \( \sin \theta + 3 \cot \theta = -\frac{3}{5} + 3 \left(-\frac{4}{3}\right) = -\frac{3}{5} - 4 = -\frac{3}{5} - \frac{20}{5} = -\frac{23}{5} \). 2) For \( 25 \cos^2 \theta \), using \( \tan^2 \theta = \frac{\sin^2 \theta}{\cos^2 \theta} = \frac{9}{16} \), we find \( \cos^2 \theta = \frac{16}{25} \). Therefore, \( 25 \cos^2 \theta = 25 \times \frac{16}{25} = 16 \). Ultimately, your answers are: 1. \( -\frac{23}{5} \) 2. \( 16 \)
