Pregunta
upstudy study bank question image url

A \( 210 \mathrm{~V}, 1200 \mathrm{RPM}, 10 \) A separately excited DC motor is controlled by a \( 1- \) phase fully controlled converter with an AC source voltage of \( 230 \mathrm{~V}, 50 \mathrm{~Hz} \). Assume that sufficient inductance is present in the armature circuit to make the motor current continuous and ripple free for any torque greater than \( 25 \% \) of rated torque. Ra \( =1.5 \Omega \) (a) What should be the value of the firing angle to get the rated torque at 800 rpm?

Ask by Watson Ellis. in Tanzania
Mar 09,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The firing angle needed is approximately \(45.6^\circ\).

Solución

Given data: - DC motor rated voltage: \( V_{\text{rated}} = 210\text{ V} \) - DC motor rated speed: \( N_{\text{rated}} = 1200\text{ rpm} \) - DC motor rated current: \( I_{\text{rated}} = 10\text{ A} \) - Armature resistance: \( R_a = 1.5\,\Omega \) - AC supply: \( V_{\text{AC,rms}} = 230\text{ V},\ f = 50\text{ Hz} \) - Fully controlled converter (single-phase) is used. - We assume enough armature inductance so that the current is continuous. - Desired operating speed: \( N = 800\text{ rpm} \) at rated torque (which implies \( I_a = I_{\text{rated}} = 10\text{ A} \)). The procedure is as follows. --- **Step 1. Find the Back EMF Constant \(K\phi\)** For a separately excited DC motor, at rated conditions the armature circuit equation is \[ V_a = E_b + I_a R_a \] At rated condition: \[ E_{b,\text{rated}} = V_{\text{rated}} - I_{\text{rated}} R_a = 210\text{ V} - 10\text{ A} \times 1.5\,\Omega = 210 - 15 = 195\text{ V}. \] The motor speed in rad/s is \[ \omega_{\text{rated}} = 1200 \times \frac{2\pi}{60} = 40\pi \, \text{rad/s} \approx 125.66\, \text{rad/s}. \] Since \[ E_b = K\phi\,\omega, \] the back EMF constant is \[ K\phi = \frac{E_{b,\text{rated}}}{\omega_{\text{rated}}} = \frac{195}{40\pi} \approx \frac{195}{125.66} \approx 1.55\, \text{V-s}. \] --- **Step 2. Determine the Back EMF at 800 rpm** First, convert \(800\text{ rpm}\) to rad/s: \[ \omega = 800 \times \frac{2\pi}{60} = \frac{1600\pi}{60} = \frac{80\pi}{3}\, \text{rad/s} \approx 83.78\, \text{rad/s}. \] Then the back EMF at \(800\text{ rpm}\) is \[ E_b = K\phi \, \omega = 1.55 \times 83.78 \approx 130\text{ V}. \] --- **Step 3. Calculate the Required Converter Output Voltage** To develop the rated torque (i.e. \(10\text{ A}\) armature current), the converter output \(V_{\text{dc}}\) must overcome both the back EMF and the voltage drop across \(R_a\). Thus, \[ V_{\text{dc}} = E_b + I_a R_a = 130\text{ V} + 10\text{ A} \times 1.5\,\Omega = 130 + 15 = 145\text{ V}. \] --- **Step 4. Relate \(V_{\text{dc}}\) to the Converter Firing Angle \( \alpha \)** For a single-phase fully controlled converter (assuming continuous conduction without commutation overlap), the average output voltage is given by \[ V_{\text{dc}} = \frac{2V_m}{\pi} \cos \alpha, \] where \(V_m\) is the peak value of the AC supply voltage. The AC supply has an RMS value of \(230\text{ V}\), so \[ V_m = \sqrt{2} \times 230 \approx 325.27\text{ V}. \] Solving for \(\cos \alpha\): \[ \cos \alpha = \frac{\pi V_{\text{dc}}}{2V_m} = \frac{\pi \times 145}{2\times 325.27}. \] Compute the numerator: \[ \pi \times 145 \approx 455.53. \] Then, \[ \cos \alpha \approx \frac{455.53}{650.54} \approx 0.700. \] Finally, determining the firing angle: \[ \alpha = \arccos (0.700) \approx 45.6^\circ. \] --- **Answer:** The firing angle required to obtain rated torque at 800 rpm is approximately \(45.6^\circ\).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the firing angle required to achieve the rated torque at 800 RPM for the given DC motor controlled by a fully controlled converter, we first need to determine the voltage required for the motor at this speed. 1. **Determine the back EMF at 800 RPM**: The back EMF (\(E\)) can be calculated using the formula: \[ E = \frac{V_{\text{rated}} \times N_{\text{actual}}}{N_{\text{rated}}} \] where \(V_{\text{rated}} = 210 V\), \(N_{\text{actual}} = 800 \, \text{RPM}\), and \(N_{\text{rated}} = 1200 \, \text{RPM}\). \[ E = \frac{210 \times 800}{1200} = 140 \, V \] 2. **Determine the required armature voltage**: The armature voltage (\(V_a\)) is given by: \[ V_a = E + I_a \cdot R_a \] Here, \(I_a = 10 \, A\) and \(R_a = 1.5 \, \Omega\): \[ V_a = 140 + 10 \times 1.5 = 140 + 15 = 155 \, V \] 3. **Calculate the required output voltage of the converter**: The output voltage from the converter is related to the AC supply voltage and the firing angle (\(\alpha\)): \[ V_{0} = \frac{2 \sqrt{2} V_s}{\pi} \cos(\alpha) \] The RMS value of the AC supply voltage \(V_s = 230 \, V\). Substitute \(V_{0} = 155 \, V\): \[ 155 = \frac{2 \sqrt{2} \times 230}{\pi} \cos(\alpha) \] Solving for \(\cos(\alpha)\): \[ 155 = \frac{648.0}{\pi} \cos(\alpha) \] \[ \cos(\alpha) = \frac{155 \pi}{648} \] \[ \cos(\alpha) \approx 0.075 \] Now calculate \(\alpha\): \[ \alpha \approx \cos^{-1}(0.075) \approx 86.56^{\circ} \] Thus, the required firing angle to achieve the rated torque at 800 RPM is approximately **86.6 degrees**. This calculation gives the adjustment needed to align electrical inputs with mechanical outputs effectively!

preguntas relacionadas

Latest Engineering Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad