Pregunta
upstudy study bank question image url

(b) Marianne sells two sizes of photo. These photos are mathematically simlar rectangles. The smaller photo has length \( 15 \mathrm{~cm}^{2} \) and width 12 cm The larger photo has area \( 352.8 \mathrm{~cm}^{2} \) Calculate the length of the larger photo.

Ask by Mcguire Tucker. in Kenya
Feb 16,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The length of the larger photo is 21 cm.

Solución

Let k be the scale factor between the corresponding sides of the photos. For similar figures, the ratio of the areas is k². The area of the smaller photo is   15 cm × 12 cm = 180 cm². Because similar figures have areas in the ratio k², we can write:   k² = (Area of larger photo) / (Area of smaller photo)     = 352.8 / 180     = 1.96. Taking the square root of both sides gives:   k = √1.96 = 1.4. Now, the length of the larger photo is k times the length of the smaller photo:   Length of larger photo = 15 cm × 1.4 = 21 cm. Thus, the length of the larger photo is 21 cm.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the length of the larger photo, we start by calculating the area of the smaller photo. The area is given by multiplying the length by the width: \[ \text{Area of smaller photo} = 15 \, \text{cm} \times 12 \, \text{cm} = 180 \, \text{cm}^2. \] Since the two photos are mathematically similar, the ratio of the areas will equal the square of the ratio of their corresponding lengths. Let the length of the larger photo be \( l \) cm and the width be \( w \) cm. The area of the larger photo is given as \( 352.8 \, \text{cm}^2 \). The ratio of the areas can be expressed as: \[ \frac{352.8}{180} = \left(\frac{l}{15}\right)^2. \] Calculating the ratio: \[ \frac{352.8}{180} = 1.96. \] Now we solve for the ratio of the lengths: \[ \left(\frac{l}{15}\right)^2 = 1.96 \implies \frac{l}{15} = \sqrt{1.96}. \] Taking the square root gives: \[ \frac{l}{15} = 1.4 \implies l = 15 \times 1.4 = 21 \, \text{cm}. \] Thus, the length of the larger photo is \( 21 \, \text{cm} \).

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad