Pregunta
upstudy study bank question image url

SOLVING PROBLEMS: FINANCE Joshua takes out a loan to buy a new lounge suite. The lounge suite costs R 7900 , and interest on the loan is \( 11 \% \) compound interest per year. If Joshua repays the loan in a lump sum afte 4 years, how much must he pay?

Ask by Chandler Warner. in South Africa
Feb 16,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Joshua must pay R 11,992.76 to repay the loan after 4 years.

Solución

To solve this problem, we can use the formula for compound interest: \[ A = P(1 + r)^n \] Where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (initial amount borrowed). - \( r \) is the annual interest rate (in decimal form). - \( n \) is the number of years the money is borrowed for. Given: - The lounge suite costs R 7900. - The interest rate is 11% per year. - Joshua repays the loan in a lump sum after 4 years. We need to find the total amount Joshua must pay after 4 years. Let's calculate the total amount using the compound interest formula. Calculate the value by following steps: - step0: Calculate: \(7900\left(1+0.11\right)^{4}\) - step1: Add the numbers: \(7900\times 1.11^{4}\) - step2: Convert the expressions: \(7900\left(\frac{111}{100}\right)^{4}\) - step3: Simplify: \(7900\times \frac{111^{4}}{100^{4}}\) - step4: Rewrite the expression: \(100\times 79\times \frac{111^{4}}{100^{4}}\) - step5: Reduce the numbers: \(79\times \frac{111^{4}}{100^{3}}\) - step6: Multiply: \(\frac{79\times 111^{4}}{100^{3}}\) The total amount Joshua must pay after 4 years is approximately R 11992.76. Therefore, Joshua must pay R 11992.76 to repay the loan in a lump sum after 4 years.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To calculate the total amount Joshua must repay after 4 years with compound interest, we can use the formula for compound interest: \( A = P (1 + r)^n \), where \( A \) is the amount paid back, \( P \) is the principal amount (R 7900), \( r \) is the interest rate (0.11), and \( n \) is the number of years (4). Plugging in the values: \[ A = 7900 (1 + 0.11)^4 \] \[ A = 7900 (1.11)^4 \] \[ A = 7900 \times 1.4641 \approx R 11567.29 \] So, Joshua must pay approximately R 11,567.29 after 4 years. Another interesting tidbit! Many people underestimate the impact of compound interest, thinking of it like a simple percentage increase. However, it works over time, meaning even a small rate can lead to a significant increase in repayment amount due to "interest on interest." This principle is why starting to save early can be a game-changer for financial health!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad